Urban Economics and Analysis

Part of P. v. Mouche

Exercises A; 2023-2224

Exercise 1 Consider the production function $f(k)=k^{\alpha}$ where $\alpha>0$. So there is only one production factor k and thus the the input also is k. The production factor price is w (supposed to be positive).
a. Show the following:
$\alpha>1 \Leftrightarrow$ there is increasing returns to scale;
$\alpha=1 \Leftrightarrow$ there is constant returns to scale;
$\alpha<1 \Leftrightarrow$ there is decreasing returns to scale.
b. Determine the conditional production factor demand function $k^{\star}(q)$, i.e. the value of the cost minimising production factor k as a function of output q.
c. Let $C(q)$ be the cost function, i.e. the minimal costs in order to produce an output q. Show that $C(q)=w q^{\frac{1}{\alpha}}$.
d. Determine the average cost function $\mathrm{AC}(q)=C(q) / q$ and verify (the in Slides A mentioned result):

$$
\begin{aligned}
\text { increasing returns to scale } & \Rightarrow \mathrm{AC} \text { is decreasing; } \\
\text { constant returns to scale } & \Rightarrow \mathrm{AC} \text { is constant; } \\
\text { decreasing returns to scale } & \Rightarrow \mathrm{AC} \text { is increasing. }
\end{aligned}
$$

Exercise 2 (Optional.) An important production function (and also utility function) is the Cobb-Douglas function

$$
f\left(k_{1}, k_{2}\right)=k_{1}^{\alpha_{1}} k_{2}^{\alpha_{2}} ;
$$

here α_{1} and α_{2} are positive. In this exercise we explore its returning to scale properties and in doing so generalize Exercise 1a. (So here the input is $\left(k_{1}, k_{2}\right)$.)
a. Calculate $f\left(\lambda_{1} k_{1}, \lambda k_{2}\right)$.
b. Show that

$$
\begin{aligned}
\text { increasing returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}>1 ; \\
\text { constant returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}=1 ; \\
\text { decreasing returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}<1
\end{aligned}
$$

Exercise 3 Consider the problem of minimizing total transport costs for transporting over a given distance an input from a mine to a factory and for transporting the output to a market. We assume a 1-dimensional situation. The distance between market and mine is 125 km . The optimal location is the location of the factory where the sum of the transport costs of a given input and the to this input belonging output is minimal.

Suppose the transport cost function (per ton) for the input is $I(k)=\frac{1}{2} \sqrt{k}$ euro and that for the output (per ton) is $O(k)=\sqrt{k}$ euro; here k is the distance in $k m$.
a. Why these cost functions may be not so realistic?
b. Is this a weight gaining industry or weight losing industry?
c. Determine the total transport costs $T\left(k_{0}\right)$ if the factory is located at distance k_{0} from the market.
d. Determine with a calculation the optimal distance k_{0} and also sketch the graph of T.
e. Why, in fact, is it not necessary to determine the optimal k_{0} by a calculation?

Exercise 4 Make exercise 1.2 from the Text Book.
Exercise 5 Consider the model for the Urban Spatial Structure (Chapter 2, 3 (and 4) in Textbook). x denotes the radial distance to the Central Business District. We suppose one income group. Are the following statements false or true?
a. Rental price p is a decreasing function of x.
b. Floor space q is an increasing function of x.
c. Amount of bread c is a decreasing function of x.
d. Price of land r is a decreasing function of x.
e. Building height h is a decreasing function of x.
f. Population density D is a decreasing function of x.

Exercise 6 Make Exercise 5.1 from the Text Book.

Short solutions.
Solution 1 a. $f(\lambda k)=(\lambda k)^{\alpha}=\lambda^{\alpha} f(k)\left\{\begin{array}{l}>\lambda f(k) \text { if } \alpha>1, \\ =\lambda f(k) \text { if } \alpha=1, \\ <\lambda f(k) \text { if } \alpha<1 .\end{array}\right.$
b. If the producer wants to produce an amount q with minimal costs, then the input k has to satisfy $k^{\alpha}=q$. Therefore $k^{\star}(q)=q^{1 / \alpha}$.
c. $C(q)=w k^{\star}(q)$. Thus, by part b, $C(q)=w q^{\frac{1}{\alpha}}$.
d. For the average costs $\mathrm{AC}(q)$ we obtain

$$
\mathrm{AC}(q)=\frac{\mathrm{C}(q)}{q}=w q^{\frac{1}{\alpha}-1}=w q^{\frac{1-\alpha}{\alpha}}
$$

e. By the formula in d. For example, for $\alpha=1 / 2$ we have decreasing returns to scale and $\mathrm{AC}(q)=w q$. So $A C(q)$ is increasing.

Solution 2 1. $f\left(\lambda_{1} k_{1}, \lambda k_{2}\right)=\left(\lambda k_{1}\right)^{\alpha_{1}}\left(\lambda k_{2}\right)^{\alpha_{2}}=\lambda^{\alpha_{1}} k_{1}^{\alpha_{1}} \lambda^{\alpha_{2}} k_{2}^{\alpha_{2}}=\lambda^{\alpha_{1}+\alpha_{2}} k_{1}^{\alpha_{1}} k_{2}^{\alpha_{2}}=\lambda^{\alpha_{1}+\alpha_{2}} f\left(k_{1}, k_{2}\right)$
2. By part 1 (as $\lambda>0$).

Solution 3 a. As $I(0)=O(0)=0$, there are no terminal costs.
b. Weight gaining industry as $O(k)>I(k)$ (for positive k).
c. $T\left(k_{0}\right)=O\left(k_{0}\right)+I\left(125-k_{0}\right)=\sqrt{k_{0}}+\frac{1}{2} \sqrt{125-k_{0}}$.
d. Derivative $T^{\prime}\left(k_{0}\right)=\frac{1}{2 \sqrt{k_{0}}}-\frac{1}{2} \frac{1}{2 \sqrt{125-k_{0}}}=\frac{1}{2}\left(\frac{1}{\sqrt{k_{0}}}-\frac{1}{2 \sqrt{125-k_{0}}}\right)$.

We see: derivative zero if $\sqrt{k_{0}}=2 \sqrt{125-k_{0}}$. I.e. $k_{0}=4\left(125-k_{0}\right)$. We find $k_{0}=100$.
Also derivative is positive if $k_{0}<100$ and negative if $k_{0}>100$. This implies $k_{0}=0$ or $k_{0}=125$ is a minimiser. As $T(125)=\sqrt{125}>\frac{1}{2} \sqrt{125}=T(0), 0$ is the minimiser.
d. Optimal to locate at the market.
e. Not necessary as we as theory also predicts this result: we have to do with a weight gaining industry and there are economics of distance (as average transportation costs for input and for outputs are decreasing).

Solution 4 a. One factory in city D gives minimises the costs.
b. One factory in each of the four cities minimises the costs.
c. Scale economies are weaker in part b compared to part a.
d. $t=4$.

Solution 5 All are true.
Solution 6 a. Mr. 1 and Mr. 2 on freeway; Mr. 3 on alternate route.
b. First: $7+5=3=15$. Second: $2+5+3=10$. Third: $10+3=13$. Fourth: $9+9+9=27$.
c.Optimal: Mr. 1 on freeway; Mr. 2 and Mr. 3 on alternate route.

