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What is game theory?

One may say: game theory is the study of interactive decision

making–that is, in situations where each person’s action affects

the outcome for the whole group.

More precisely:

Traditional game theory deals with mathematical mod-

els of conflict and cooperation in the real world between

at least two rational intelligent players.

• “Traditional” because of rationality assumption.

• Player: individuals, organisations, countries, animals,

computers, ... .

• Situations with only one player are studied in classical

optimisation theory.



What is game theory? (ctd.)

• Applications.
• Parlour games
• Economics: Nobel prices in 1994 for Nash, Harsanyi and

Selten, in 2005 for Aumann and in 2007 for Meyerson and

Maskin.
• Sociology, psychology, antropology, politocology.
• Military strategy.
• Biology (evolutionary game theory).
• Design of computer games and robots.

• Game theory provides a language that is very appropriate

for conceptual thinking.

• Many game theoretical concepts can be understood

without higher mathematics.

• Aim of game theory is to understand/predict how games

will be played.



Game in strategic form

Now we start with the formal theory. The important object for us

is the notion of game in strategic form .

In a game in strategic form

• there are n players;

• each player has a set of possible strategies;

• choices are made simultaneously and independently.

If player 1 chooses strategy x1, player 2 strategy x2, ... , player

n strategy xn, then this leads for player i to a payoff

fi(x1, . . . , xn).



Game in strategic form (ctd.)

In fact many economic games have this form. As an example

we mention here the topic of industrial organization. The

modern theory of industrial organization heavily relies on game

theory; various market forms are considered, like that of

Cournot Oligopoly . The Cournot Oligopoly is one of the oldest

economic games.

A Cournot Oligopoly concerns firms in a competitive setting.

There are various variants. Let us here briefly consider the

homogeneous duopoly: “duopoly” concerns the assumption of

two firms and ‘homogeneous’ that the firms sell the same

article.



Cournot Oligopoly (ctd.)

The model is as follows: the firms, 1 and 2, simultaneously and

independently supply an amount of the article to the market

and then can sell it for a price depending on the total amount.

With xi the amount for firm i , the total amount is X = x1 + x2

and the price is p(X ). The function p is called price function

(or inverse demand function). With ci the cost function of firm i

the profit function of firm i , being revenue minus costs, is

πi(x1, x2) = p(x1 + x2)xi − ci(xi ).



Bimatrix game

This situation becomes simpler in the case of two players, each

with a finite number of strategies. Then the game boils down to

a bimatrix game.

So in a bimatrix game

• there are 2 players, player 1 and player 2.

• each player has a finite number of strategies: player 1

chooses a row and player 2 a column.

• choices are made simultaneously and independently.



Bimatrix game (ctd.)

Consider, for example, the bimatrix game





3;3 2;2
7;−1 −3;1
1;2 12;−9



 .

• This is a 3 × 2-bimatrix game, i.e. it has 3 rows and 2

columns.

• Player 1 chooses a row: row 1, row 2 or row 3; so player 1

has 3 strategies. Player 2 chooses a column: column 1 or

column 2; so player 2 has 2 strategies.

• At the strategy profile (3,2), i.e. row 3 and column 2, player

1 has payoff 12 and player 2 has payoff −9.



Many games can be represented in a natural way as a bimatrix

game. For example stone-paper-scissors:





0;0 −1;1 1;−1

1;−1 0;0 −1;1
−1;1 1;−1 0;0





Indeed: first strategy is stone, second paper and third scissors.

If players make the same choice, then it is draw: payoffs 0 for

both. If players make a different choice, then there is a winner

with payoff 1 and a looser with payoff −1.

The above game is an example of zero sum game, i.e. a game

where the sum of the payoffs at each cell of the bimatrix is zero.



Fundamental notions

Now we are ready to define the notions we need. These

notions are not only very useful for our congestion model, but

also in the modelling of various economic problems.

Consider a game in strategic form.

• Strategy of a player: completely elaborated plan of

playing.

• Strategy profile : for each player a strategy.

• Nash equilibrium : strategy profile such that no player

wants to deviate from it.

• Fully cooperative strategy profile : a strategy profile where

the sum of the payoffs is maximal.

Instead of “fully cooperative strategy profile” also “social

optimum” is used.



Examples

1.








2;4 1;4 4;3 3;0
1;1 1;2 5;2 6;1
1;2 0;5 3;4 7;3
0;6 0;4 3;4 1;5









.

Nash equilibria: (1,1), (1,2), (2,2) and (2,3).

Social optima: (3,4).



Examples (ctd.)

2.





6;1 3;1 1;5
2;4 4;2 2;3
5;1 6;1 5;2





Nash equilibria: (3,3).
Social optima: (1,1), (3,2), (3,3).



Examples (ctd.)

3.

(

1;0 3;1 6;0
2;1 4;1 8;1

)

.

Nash equilibria: (2,1), (2,2), (2,3).
Social optima: (2,3).



Examples (ctd.)

4.





6;1 3;1 1;5
2;4 4;2 2;3
5;3 6;1 5;2





Nash equilibria: none.

Social optima: (3,1).



Examples (ctd.)

5.
(

1;0 1;2 0;4
)

.

Nash equilibria: (1,3).
Social optima: (1,3)

You can test further Your understanding of these notions with

Exercises 1 and 2 (in the file “Exercises A”)



John Nash

• John Nash (1928 – 2015).

• Mathematician. (Economist ?)

• Nobel price for economics in 1994, together with Harsanyi

and Selten.

• Abel Price for mathematics in 2015. Just after having

received it he was killed in a car crash.

• Got this price for his PhD dissertation (27 pages) in 1950.
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Introduction

We are going to consider the real world problem of congestion

and present a simple game theoretic model for it. In fact, below

You can find a quick and efficient route for understanding the

very basics of congestion games.

Let us start with a very simple example by considering the

following traffic network:



Simple traffic network

bc m

n

n

1
2

3 4

c1(k) = 2k
c2(k) = 7k − 5

c3(k) = 8k
c4(k) =

8
3k2 + 16

3



Simple traffic network (ctd.)

The intended interpretation is as follows.

• Each morning n commuters want to go from node (i.e.

place) © to node
⊕

.

• There are 4 roads: 1, 2, 3, 4. The configuration of these

roads makes that there are two possible routes for

commuting: roads 1–2 (route 1) and roads 3–4 (route 2).

• cj(k) denotes the costs for a commuter of using road j if k

commuters use this road. (So this costs are the same for

all commuters who take the road.)



Questions

Questions we want to answer:

• How the commuters will behave?

• Is this behaviour social optimal?

We shall answer these questions by looking to them from a

game theoretical perspective. In order to do so we make out of

situations as the above one (with only two routes) as follows a

game in strategic form.

Of course we assume that the commuters are rational and

intelligent. But also that they simultaneously and independently

choose a route. Rationality here concerns that commuters want

to minimise costs.



Game structure

The commuters are the players and the strategy set of a

commuter is the set of routes he can use. So a strategy just is a

route. Note that in the above simple model each commuter has

the same strategy set. We label (in some way) the commuters

by 1,2, . . . ,n.

Denote by (x1, . . . , xn) a strategy profile, i.e. commuter 1

chooses x1, commuter 2 chooses x2, ... commuter n chooses

xn.



Analysis

First we further suppose n = 2, i.e. there are 2 commuters.

Denote by C1(x1, x2) the total costs of commuter 1 if this

commuter chooses route x1 and commuter 2 route x2. Define

C2(x1, x2) in the same way.

For example: at the strategy profile, i.e. route profile, (2,1) (i.e.

player 1 takes route 2 and player 2 takes route 1), player 1 has

costs 8 · 1 for road 3 and 8
3
12 + 16

3
= 8 for road 4. Thus

C1(2,1) = 8 + 8 = 16. And for player 2 this leads to

C2(2,1) = 2 + 2 = 4.



Analysis (ctd)

We find

C1(1,1) = 13, C2(1,1) = 13

C1(1,2) = 4, C2(1,2) = 16

C1(2,1) = 16, C2(2,1) = 4

C1(2,2) = 32, C2(2,2) = 32

This can be represented as follows by means of the bimatrix:

(

13;13 4;16

16;4 32;32

)

.



Analysis (ctd)

(

13;13 4;16

16;4 32;32

)

.

A simple game theoretic analysis shows the following.

Prediction of behaviour : both choose route 1.

Social optimal : each commuter chooses a different route.

We see: equilibrium is not social optimal; this is a typical result.

The case of more than two commuters is more difficult to

handle. and will



Braess’ Paradox
The Braess’ Paradox is named after the mathematician Dietrich

Braess. It states that adding (removing) a link to a

transportation network can increase (decrease) the travel cost

for all commuters in the network. It is a counterintuitive

phenomenon.

The paradox occurs only in networks in which the commuters

operate independently and non cooperatively, in a

decentralized manner.

In fact the Braess’ Paradox is not limited to traffic flow. It also

occurs in other types of ‘networks’. In fact it is widespread

occurring for example with biological or electricity systems. This

makes this paradox extra interesting!

Example from sport: removing a key player from a basketball

team can result in the improvement of the team’s offensive

efficiency. (“When less is actually more.”)



Braess’ Paradox (ctd.)

The Braess’ paradox has been observed in various cities, for

example in Seoul, New York and Stuttgart.

In New York the often congested 42nd was closed for a parade.

People suspected that the closing of this road would lead to the

worst traffic jams in history. Instead, the traffic flow actually

improved that day.



Braess’ Paradox (ctd.)

Let us finally look to the following Youtube video:

https://www.youtube.com/watch?v=cALezV_Fwi0

https://www.youtube.com/watch?v=cALezV_Fwi0


Hotelling Game

Here we consider another example of a model that can deal

deal with location: a game theoretical one. It is a discrete

variant of the original so-called Hotelling Game.

The (Discrete) Hotelling Game is a game among n ≥ 2 players

that depends on a parameter m, being a positive integer



Consider the m + 1 points of H := {0,1, . . . ,m} on the real line,

to be referred to as vertices.

0 1 2 3 4 5 · · · m

Rule of the game when n = 2: 2 players simultaneously and

independently choose a vertex. If player 1 (2) chooses vertex

x1 ( x2), then the payoff fi(x1, x2) of player i is the number of

vertices that is the closest to his choice xi ; however, a shared

vertex, i.e. one that has equal distance to both players,

contributes only 1/2.



Hotelling Game (ctd.)

Various (economic) interpretations of this game are possible.

One is the location/vendor/consumer interpretation:

Imagine a stretch of beach on which two ice cream vendors

want to sell ice cream. The flavours they offer and the prices

they charge are the same, so consumers go to the closest cart.

The question for the two vendors is, where should they set up

their carts to get the most consumers? In fact there are various

variants of this model. Above it is assumed that there is a finite

number (i.e. m+1) locations where the consumers can locate.



Hotelling Game (ctd).)
Example m = 7.

Strategy profile ( 5,2 ) :

Payoffs:

1 + 1 + 1 + 1 = 4

1 + 1 + 1 + 1 = 4

Strategy profile ( 0,3 ) :

Payoffs

1 + 1 = 2

1 + 1 + 1 + 1 + 1 + 1 = 6



Hotelling Game (ctd.)
Example m = 7.

Strategy profile ( 2,6 ) :

Payoffs:

1 + 1 + 1 + 1 + 1
2 = 41

2
1
2 + 1 + 1 + 1 = 31

2

Strategy profile ( 3,3 ) :

Payoffs:
1
2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
= 4

1
2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
= 4



Hotelling Game (ctd.)

General rule of the game: n players simultaneously and

independently choose a vertex. If player i = 1,2, . . . ,n chooses

vertex xi , then his payoff fi(x1, x2, . . . , xn) is the number of

vertices that is the closest to his choice xi . However, a shared

vertex, i.e. one that has the same distance to other players, say

k , contributes only 1/(k + 1).


