# Urban Economics and Analysis 

Part of P. v. Mouche
Assignment B; 2022-2023

Exercise 1 The following true/false questions deal with the bimatrix game

$$
\left(\begin{array}{ccc}
3 ; 6 & 6 ; 5 & 4 ; 3 \\
6 ; 2 & 5 ; 3 & 5 ; 4
\end{array}\right)
$$

a. The row-player has 2 strategies.
b. There are 6 strategy profiles.
c. Playing row 1 and column 1 is a Nash equilibrium.
d. There is a Pareto inefficient Nash equilibrium.
e. Playing row 1 and column 3 is a social optimum.
f. This game is a zero-sum game.
g. Playing row 2 and column 1 is a Pareto efficient strategy profile.
h. Playing row 1 and column 1 is a social optimum.

Exercise 2 Consider the following variant of the traffic network with two commuters presented in the context of the Braess' paradox in Slides B.

a. Identify for each commuter the strategies.
b. Represent this game as a bimatrix game.
c. Determine the Nash equilibria.

Exercise 3 Modify the above traffic network by adding as follows a fifth route that can be used without costs.

d. Identify for each commuter the strategies.
e. Represent this game as a bimatrix game.
f. Determine the Nash equilibria and the price of anarchy.
g. Compare with parts $c$ and $d$ in Exercise 3.

Exercise 4 'Play' with the following two NetLogo programs.

- Traffic Basic (Choose File/Models Library/Social Science/Traffic Basic).
- Braess' Paradox (Send to You by email).

Short solutions.
Solution 1 aT bT cF dT eF fF gF hF.
Solution 2 a. Strategy 1 is route choice $1-2$. Strategy 2 is route choice $3-4$.
b. $\left(\begin{array}{ll}5 / 3 ; 5 / 3 & 4 / 3 ; 4 / 3 \\ 4 / 3 ; 4 / 3 & 5 / 3 ; 5 / 3\end{array}\right)$.
c. This game has two Nash equilibria: $(1,2)$ and $(2,1)$. In each Nash equilibrium each commuter has costs $4 / 3$.

Solution 3 d. Here we have an additional route choice: $1-5-4$.
e. With the additional route choice as third strategy we obtain the bimatrix game $\left(\begin{array}{ccc}5 / 3 ; 5 / 3 & 4 / 3 ; 4 / 3 & 5 / 3 ; 1 \\ 4 / 3 ; 4 / 3 & 5 / 3 ; 5 / 3 & 5 / 3 ; 1 \\ 1 ; 5 / 3 & 1 ; 5 / 3 & 4 / 3 ; 4 / 3\end{array}\right)$.
f. This game has a Nash equilibrium: $(3,3)$. In this equilibrium each commuter has costs $4 / 3$.
g. Conclusion: adding route 5 "does not improve the situation". (This exercise illustrates in a weak way the so-called Braess' paradox.) Also note: in each Nash equilibrium in part c drivers take a different route while in the unique Nash equilibrium in part f they take the same route.

Solution 4

