Urban Economics and Analysis

Part of P. v. Mouche

Assignment A; 2022-2223

Exercise 1 Consider the production function $f(k)=k^{\alpha}$ where $\alpha>0$. So there is only one production factor k and thus the the input also is k. The production factor price is w (supposed to be positive).
a. Show the following:
$\alpha>1 \Leftrightarrow$ there is increasing returns to scale;
$\alpha=1 \Leftrightarrow$ there is constant returns to scale;
$\alpha<1 \Leftrightarrow$ there is decreasing returns to scale.
b. Determine the conditional production factor demand function $k^{\star}(q)$, i.e. the value of the cost minimising production factor k as a function of output q.
c. Let $C(q)$ be the cost function, i.e. the minimal costs in order to produce an output q. Show that $C(q)=w q^{\frac{1}{\alpha}}$.
d. Determine the average cost function $\mathrm{AC}(q)=C(q) / q$ and prove (the in Slides A mentioned result):

$$
\begin{aligned}
\text { increasing returns to scale } & \Rightarrow \mathrm{AC} \text { is decreasing; } \\
\text { constant returns to scale } & \Rightarrow \mathrm{AC} \text { is constant; } \\
\text { decreasing returns to scale } & \Rightarrow \mathrm{AC} \text { is increasing. }
\end{aligned}
$$

Exercise 2 An important production function (and also utility funciton) is the CobbDouglas function

$$
f\left(k_{1}, k_{2}\right)=k_{1}^{\alpha_{1}} k_{2}^{\alpha_{2}} ;
$$

here α_{1} and α_{2} are positive. In this exercise we eplore its returning to scale properties and ind doing so generalize Exercise 1a. (So here the input is $\left(k_{1}, k_{2}\right)$.)
a. Calculate $f\left(\lambda_{1} k_{1}, \lambda k_{2}\right)$.
b. Show that

$$
\begin{aligned}
\text { increasing returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}>1 ; \\
\text { constant returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}=1 ; \\
\text { decreasing returns to scale } & \Leftrightarrow \alpha_{1}+\alpha_{2}<1 .
\end{aligned}
$$

Exercise 3 Consider the problem of minimizing total transport costs for transporting over a given distance an input from a mine to a factory and for transporting the output to a market. We assume a 1-dimensional situation. The distance between market and mine is 125 km . The optimal location is the location of the factory where the sum of the transport costs of a given input and the to this input belonging output is minimal.

Suppose the transport cost function (per ton) for the input is $I(d)=\frac{1}{2} \sqrt{d}$ euro and that for the output (per ton) is $O(d)=\sqrt{d}$ euro; here d is the distance in km .
a. Why these cost functions may be not so realistic?
b. Is this a weight gaining industry or weight losing industry?
c. Determine the total transport costs $T\left(k_{0}\right)$ if the factory is located at distance k_{0} from the market.
d. Determine with a calculation the optimal k_{0} and also sketch the graph of T.
e. Why, in fact, is it not necessary to determine the optimal k_{0} by a calculation?

Exercise 4 Make exercise 1.2 from the text book.
Exercise 5 In this exercise, we analyse the urban model from Chapter 2 in the text book for the residents utility function $u(q, c)=q c$.
a. Determine the formulas for the optimal floor space $q^{\star}(x)$ and bread consumption $c^{\star}(x)$ in terms of the income y, distance to the center x, rental price $p(x)$ and commuting costs t.
b. We know (by the equilibrium principle) that in the equilibrium the utility is independent of x; say this utility is w. Show that for the equilibrium rental price $p^{\star}(x)$ the equality $(y-t x)^{2}=4 w p^{\star}(x)$ holds.
c. Show that $\frac{d p^{*}}{d x}(x)=-\frac{t}{q^{\star}(x)}$.
d. Show that $p^{\star}(x)=\frac{p^{\star}(0)}{y^{2}}(y-t x)^{2}$.
e. Can we say something about the exact value of $p^{\star}(0)$ in part d ?
f. Show that total equilibrium rent $p^{\star}(x) \cdot q^{\star}(x)$ is a decreasing function of x. Is this realistic?
g. If You like then now suppose the utility function is the Cobb-Douglas utility function $u(q, c)=q^{\alpha_{1}} c^{\alpha_{2}}$ with $\alpha_{1}+\alpha_{2}=1$ and show that the formula in c continues to hold. (In fact this formula holds for a large class of 'nice' utility functions.) Is the total equilibrium rent still a decreasing function of x ?

Exercise 6 Consider the model for the Urban Spatial Structure (Chapter 2, 3 (and 4) in Textbook). x denotes the radial distance to the Central Business District. We suppose one income group. Are the following statements false or true?
a. Rental price p is a decreasing function of x.
b. Floor space q is an increasing function of x.
c. Amount of bread c is a decreasing function of x.
d. Price of land r is a decreasing function of x.
e. Building height h is a decreasing function of x.
f. Population density D is a decreasing function of x.

Short solutions.
Solution 1 a. $f(\lambda k)=(\lambda k)^{\alpha}=\lambda^{\alpha} f(k)\left\{\begin{array}{l}>\lambda f(k) \text { if } \alpha>1, \\ =\lambda f(k) \text { if } \alpha=1, \\ <\lambda f(k) \text { if } \alpha<1 .\end{array}\right.$
b. If the producer wants to produce an amount q with minimal costs, then the input k has to satisfy $k^{\alpha}=q$. Therefore $k^{\star}(q)=q^{1 / \alpha}$.
c. $C(q)=w k^{\star}(q)$. Thus, by part b, $C(q)=w q^{\frac{1}{\alpha}}$.
d. For the average costs $\mathrm{AC}(q)$ we obtain

$$
\mathrm{AC}(q)=\frac{\mathrm{C}(q)}{q}=w q^{\frac{1}{\alpha}-1}=w q^{\frac{1-\alpha}{\alpha}}
$$

e. By the formula in d. For example, for $\alpha=1 / 2$ we have decreasing returns to scale and $\mathrm{AC}(q)=w q$. So $A C(q)$ is increasing.

Solution 2

Solution 3 a. There are no fixed costs.
b. Weight gaining industry as $O(d)>I(d)$ (for positive d).
c. $T\left(k_{0}\right)=O\left(k_{0}\right)+I\left(125-k_{0}\right)=\sqrt{k_{0}}+\frac{1}{2} \sqrt{125-k_{0}}$.
d. Derivative $T^{\prime}\left(k_{0}\right)=\frac{1}{2 \sqrt{k_{0}}}-\frac{1}{2} \frac{1}{2 \sqrt{125-k_{0}}}=\frac{1}{2}\left(\frac{1}{\sqrt{k_{0}}}-\frac{1}{2 \sqrt{125-k_{0}}}\right)$.

We see: derivative zero if $\sqrt{k_{0}}=2 \sqrt{125-k_{0}}$. I.e. $k_{0}=4\left(125-k_{0}\right)$. We find $k_{0}=100$.
Also derivative is positive if $k_{0}<100$ and negative if $k_{0}>100$. This implies $k_{0}=0$ or $k_{0}=125$ is a minimiser. As $T(125)=\sqrt{125}>\frac{1}{2} \sqrt{125}=T(0), 0$ is the minimiser.
d. Optimal to locate at the market.
e. Not necessary as we as theory also predecits this result: we have to do with a weight gaining industry and there are economics of distance (as average transportation costs for input and for outputs are decreasing).

Solution 4 a. One factory in city D gives minimises the costs.
b. One factory in each of the four cities minimises the costs.
c. Scale economies are weaker in part b compared to part a.
d. $t=4$.

Solution 5 a. Remember the general formula for the Marshallian demand functions of the Cobb-Douglas utility function

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}: \\
x_{1}^{\star}=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} \frac{m}{p_{1}}, x_{2}^{\star}=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} \frac{m}{p_{2}} .
\end{gathered}
$$

For our case this leads to

$$
q^{\star}(x)=\frac{y-t x}{2 p(x)}, \quad c^{\star}(x)=\frac{y-t x}{2}
$$

b. We have $u\left(q^{\star}(x), c^{\star}(x)\right)=w$. So $w=\frac{y-t x}{2 p^{\star}(x)} \cdot \frac{y-t x}{2}=\frac{(y-t x)^{2}}{4 p^{\star}(x)}$. Thus $(y-t x)^{2}=4 w p^{\star}(x)$.
c. By differentiating the identity in part b with respect to x we find $-2 t(y-t x)=4 w \frac{d p^{\star}}{d x}$. From this and parts a and b we obtain $\frac{d p^{\star}}{d x}=\frac{-2 t(y-t x)}{4 w}=\frac{-2 t(y-t x)}{4 \frac{(y-t x)^{2}}{4 p^{\star}(x)}}=\frac{-2 t p^{\star}(x)}{y-t x}=\frac{-t}{q^{\star}(x)}$.
d. Since utility is independent of x we have $w=q^{\star}(0) c^{\star}(0)=\frac{y^{2}}{4 p^{\star}(0)}$. So, by part $\mathrm{b}, p^{\star}(x)=\frac{(y-t x)^{2}}{4 w}=$ $\frac{(y-t x)^{2}}{4 \frac{y^{2}}{4 p^{\star}(0)}}=\frac{p^{\star}(0)}{y^{2}}(y-t x)^{2}$.
e. No.
f. By part a, we obtain $p^{\star}(x) q^{\star}(x)=\frac{y-t x}{2}$. It is difficult to say whether this is realistic. Remember that we now from theory that p^{\star} is a decreasing function of x and q^{\star} is an increasing function of x. (Also see discussion in text book.)
f. Repeat the above, but start with

$$
q(x)=\alpha_{1} \frac{y-t x}{p(x)}, \quad c(x)=\alpha_{2}(y-t x)
$$

(Also remember: from theory we know that the formula in c even holds for each 'standard' utility function.)
Solution 6 All are true.

