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This typoscript resumes some important notions and results for games in strategic form. Below the #’s
concern results. For proofs of these results we refer to the litterature. .



1 General notations

Forx = (z!,...,2"),y = (y',...,y") € R" we write

x>yifz’ >y (1 <i<n),
x>yifx>yandx #y,
x> yifz' >y (1<i<n).

With S,, we denote the group (under the composition operation) of permutations of the set {1,...,n}.

2 Main notions
Definition 1 A game in strategic form (with n > 1 players) is an ordered 2n—tuple
D= (XY ., X" fm),

where, writing

the X are non-empty sets and where with
X=Xt %o x X"

the
fi: X =R

are functions. The elements of N are called players, X® is called strategy set of player i and f* is
called payof function of player i. An element of X is called strategy of player i and an element of x
is called multi-strategy." If x is a multi-strategy, then f?(x) is called the payoff to player j at x and
(f1(x),..., f(x)) is called payoff vector at x.

Below we always denote by I' a game in strategic form with n players, we identify X with X? x X?,
and accordingly write x € X as x = (z%;x"). And for x € X we write

f(x) = (f'(x),..., f"(x)).
Definition 2 A game in strategic form

F=(X,....X; ..., fV)
(with for each player the same strategy set X) is called symmetric if foreach m € S,,, i € N and x € X

fi(zt, ... z") = f7® (x”il(l), . ,x”il(”)).
Definition 3 Fori € A/ and z € X' the conditional payoff function fi : X? — R is defined by
fi(zh) == fi(a'; ).

Definition 4 1. The best-reply-correspondence of player i the correspondence R’ : X* —o X defined

by _
Ri(z) := argmaxf..

R(z) is called the best-reply-set of player i against z.

UIn the litterature also the term strategy profile is used instead of *multi-strategy’.



2. The best-reply-correspondence of player ¢ is the correspondence R : X — X defined by
R(x) = R (x') x - -+ x R"(x™).

Definition 5 The best-reply-payoff-function of player i is the function ¢* : X* — R U {+oc} defined by

¢'(z) = sup f,(z").
I€XZ

¢'(z) is called the best-reply-payoff of player i at z.

Definition 6 x € X is called an nash equilibrium of T if for every i € A and y* € X*
Fily'sx') < fi(x).

We denote the set of nash equilibria of I' by
E(7).

Definition 7 1. d* € X' is called a dominant strategy of player i if
fi(d'sz) > fi(a';2)
for every x* € X% and z € X'.
2. d* € X'is called a strictlty dominant strategy of player i if
fi(d';z) > fi(a';2)

for every ' € X'\ {d'} and z € X".

Definition 8 Let A € R"™ with A > 0. A multi-strategyx is called A—weighted full cooperative if it
maximises the function

>

j=1

In case A = 1 we call such a multi-strategy also full cooperative.

Definition 9 If x and z are multi-strategies, then one says:

e z is a pareto-improvement of x if f(z) > f(x);

e z is an unanimous pareto-improvement of x if f(z) > f(x).
A multi-strategy x is called

o (strongly) pareto-efficiént if there does not exist a pareto-improvement of x.

e weakly pareto-efficiént if there does not exist an unanimous pareto-improvement of x.
A multi-strategy x is called

o (strongly) pareto-inefficient if it is not pareto efficient.

e (weakly) pareto-inefficient if it is not weakly pareto efficient.



3 Dominant strategies

sl 1. Each player has at most one strictly dominant strategy.
2. If d is a dominant strategy of player j, then his best-reply-payoff-function is given by ¢’(z) =
(&3 2).
a2 1. If each player j has a dominant strategy d’, then the multi-strategy d := (d*, ..., d") is a nash

equilibrium. Such an nash equilibrium also is called a dominant equilibrium.

2. If each player j has a strictly dominant strategy d, then the multi-strategy d := (d*,...,d") is a
nash equilibrium. This nash equilibrium also is called strictly dominant equilibrium.

3. Ifplayer j has a strictly dominant strategy d’, then it holds for each nash equilibrium e that €/ = dJ.

4 Best response correspondences and Nash equilibria

4 3 The following statements for x € X are equivalent:
1. x € X is a nash equilibrium;
2. 27 € RI(x7) (j e N).
3. X is a fixed point of R.

2 4 If each strategy set is a metric space and each payoff function is continuous, then the set of nash
equilibria is a closed subset of X.

5 Existence, semi-uniqueness and uniqueness of nash equilibria

4 5 (Isoda-Nikaido) The following conditions together guarantee the existence of a nash equilibrium.
1. each strategy set X* is a compact convex subset of a finite dimensional linear topological space;
2. each payoff function f* is continuous;

3. the set of maximiser of each conditional payoff function g. is convex.?

2 6 Suppose X is a metric space and the best-reply-correpondance R : X —o X is singleton-valued and a
contraction. Then there exists at most one nash equilibrium. If X is complete, then there is a unique nash
equilibrium.

6 Pareto efficient multi-strategies

27 Let A € R" with A > 0 and let > 0. The set of A—weighted full cooperative multi-strategies and
the set of uA—weighted full cooperative multi-strategies are the same.

28 1. Let X € R™ with A > 0. Each \-weighted full cooperative multi-strategy is weakly pareto-
efficient.

2. Let A € R™ with A > 0. Each \-weighted full cooperative multi-strategy is strongly pareto-efficient.

2Sufficient for this is that each conditional payoff function is quasi-concave.



29 Suppose X is a quasi-compact subset of a topological space, each payoff function f7 is continuous
and X € R™ with X > 0. Then there exists a X-weighted full cooperative multi-strategy.

2 10 If each strategy set is a convex subset of a linear space and each payoff function strictly strictly
concave, then the set of weakly pareto efficient multi-strategies equals the set of strongly pareto efficient
multi-strategies.

2 11 Suppose the strategy set of each player is a metric space and each payoff function is continuous.
Then:

1. The set of weakly pareto efficient multi-strategies is closed.

2. If each strategy set is compact, then the set of strongly pareto efficiente multi-strategies is compact
and not-empty.

3. If each strategy set is compact, then for each x € X there exists a pareto-efficient multi-strategy z
with f(x) < f(z).

2 12 Suppose n = 2, each strategy set is a convex subset of linear space and a metric space. If each payoff
function is concave, then the set of strongly pareto efficient multi-strategies is closed.

» 13 Suppose X is a subset of a linear space and A € R" with X > 0. If the function 2;21 N f1is strictly
quasi-concave, then there exists at most one A-weighted full cooperatieve multi-strategy.

2 14 Suppose X is a compact metric space. and each payoff function is continuous. Then there exists for
each A € R" with A > 0 an A-weighted full cooperative multi-strategy.

2 15 Suppose each strategy set is a convex subset of linear space and each payoff function is concave.
Then for every x € X: x is weakly pareto efficient < there exists A € R™ with A > 0 such that x is
A-weighted full cooperative.

7 Dictator-multi-strategies
Definition 10 A multi-strategy b is called dictator-multi-strategy for player i if b is a maximiser of f*.

2 16 Each dictator-multi-strategy is weakly pareto-efficient.

8 Prisoners’ dilemma games

Definition 11 A game in strategic form is called a prisoners’ dilemma game if each player has a strictly
dominant strategy and the strictly dominant equilibrium is weakly pareto-inefficient.

9 Social welfare loss

Definition 12 The social welfare loss of a game in strategic form I with bounded payoff functions is

defined as the number
sup fix) — sup fl(e
xexz FE



10 Minimax and maximin
Definition 13 Fix i € .

1. ¢ := iI}nyXi Sup:,;_eXi fi(g:;y)(:' infyeXg #'(y)) is called minimax-payoff of player i. And
m € X" such that 7° = sup__ i f*(x;m) is called an optimal punishment for player i.

2. vti= SUp i inszX{ fi(x%; z). is called the maximin-payoff of player i; And p’ € X* such that
P = inf s fi(p%;z). is called a maximin strategy of player i.

<

Definition 14 w € R" is called (strictly) individually rational for player i if
w' >7 (w' > 7T
and (strictly) individual rational if w is (strictly) individual rational for each players.

2 17 For each nash equilibrium e the payoff vector f(e) is individually rational.

2 18 Each strong equilibrium is a nash equilibrium and is weakly pareto efficiént.

11 Symmetric games

2 19 Suppose T is symmetric.
n

1. IfT has a unique nash equilibrium e, then each player has the same payoffat e and e = - -- = e™.

2. If T has a unique full cooperative multi-strategy y then at this multi-strategy each plsyer has the
same payoff and y' = - - = y™.

2 20 Each symmetric game in strategic form with #X = 2 has a nash equilibrium.

12 Strong equilibria
Definition 15 A coalition is a subset of A" and a coalition structure is a sequence
C=(Cy,...,Cg)
consisting of disjoint non-empty coalitions whose union is AV
Notation: for a coalition S we define S := N\ S. If S'is a non-empty coalition, then we define, with
#S the number of elements of S, A1 (S),..., Axs(S) as the unique elements of A/ for which A;(S) <
< Ars(S), S ={M(S5),...,Axs(5)} and, using this notation,
XS = XAI(S) X oo X XA#S(S).

We identify X with X% x X S and write according to this identification x € X als x = (x7; x5 ).

Definition 16 A multi-strategy x is called a strong (nash) equilibrium of I if there does not exist a non-
empty coalition S and y € X9 such that f*(y; %) > fi(x) (i € 9).
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