# Microeconomics 

Please remember
Autumn 2018
"The time has come," the Walrus said, "To talk of many things: Of shoes - and ships - and sealing-wax - Of cabbages - and kings And why the sea is boiling hot - And whether pigs have wings." (Lewis Carroll)

1. Prices and income.

- Prices: $p_{1}$ and $p_{2}$. Income: $m$
- Prices always are supposed to be positive. (Handling prices 0 is difficult.)
- Budget restriction (and budget set): $p_{1} x_{1}+p_{2} x_{2} \leq m$.
- Budget line: $p_{1} x_{1}+p_{2} x_{2}=m$. Thus $x_{2}=\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}$.
- A value tax $t$ replaces a price $p$ by $(1+t) p$. A quantity tax $t$ replaces a price $p$ by $p+t$.

2. Indifference sets.

- The sets of good bundles for which the consumer is indifferent are called indifference sets. Remark: these sets often are, par abus de langage, called curves.
- Indifference sets cannot intersect.

3. Utility.

- Under weak conditions (You do not need to know) a preference relation $\succeq$ can be represented by a utility function $u$. This means that

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \text { is equivalent with } u\left(x_{1}, x_{2}\right) \geq u\left(y_{1}, y_{2}\right), \\
& \left(x_{1}, x_{2}\right) \succ\left(y_{1}, y_{2}\right) \text { is equivalent with } u\left(x_{1}, x_{2}\right)>u\left(y_{1}, y_{2}\right), \\
& \left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \text { is equivalent with } u\left(x_{1}, x_{2}\right)=u\left(y_{1}, y_{2}\right),
\end{aligned}
$$

- Utility is ordinal in the sense that each strictly increasing transformation of the utility function describes the same economic situation.
- Only cardinal utility later when we deal with uncertainty.
- Specific (important) utility functions.
- Cobb-douglas: $u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}$.
- Solow: $u\left(x_{1}, x_{2}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}$. (Perfect substitutes.)
- Leontief: $u\left(x_{1}, x_{2}\right)=\min \left(x_{1} / \alpha_{1}, x_{2} / \alpha_{2}\right)$. (Perfect complements.)
- Maximum: $u\left(x_{1}, x_{2}\right)=\max \left(x_{1} / \alpha_{1}, x_{2} / \alpha_{2}\right)$.
- Quasi-linear: $u\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}$. (Good 1 is quasi-linear.)
- Special quasi-linear: $u\left(x_{1}, x_{2}\right)=\alpha \sqrt{x_{1}}+x_{2}$.
- Indifference.
- An indifference curve $x_{2}\left(x_{1}\right)$ is such that $u\left(x_{1}, x_{2}\left(x_{1}\right)\right)=$ constant.
- Marginal rate of substitution at a good bundle: ${ }^{1}$

$$
\operatorname{MRS}:=\frac{\partial u}{\partial x_{1}} / \frac{\partial u}{\partial x_{2}}
$$

In case $x_{2}\left(x_{1}\right)$ is an indifference curve,

$$
\operatorname{MRS}=-\frac{d x_{2}}{d x_{1}}
$$

For cobb-douglas:

$$
\operatorname{MRS}=\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}}
$$

- For homothetic preferences the MRS is constant along each ray through the origin.

[^0]- For quasi-linear utility functions the indifference curves are vertical translates of each other.
- Method of Lagrange.
- Optimisation problem: maximise (or minimise) a function $f\left(x_{1}, \ldots, x_{n}\right)$ under $m$ restrictions $g_{i}\left(x_{1}, \ldots, \ldots, x_{n}\right)=0(1 \leq i \leq m)$ (for our applications we always have $m=1$.)
- Lagrange function $L=f-\lambda_{1} g_{1}-\cdots-\lambda_{m} g_{m}$.
- In optimum: $\frac{\partial L}{\partial x_{1}}=0, \cdots, \frac{\partial L}{\partial x_{n}}=0$.
- Two laws of Gossen.
- Gossen's first law about diminishing marginal utility is nonsense. But decreasing MRS makes sense.
- Gossen's second law: $p_{1} / p_{2}=\frac{\partial u}{\partial x_{1}} / \frac{\partial u}{\partial x_{2}}$ (see below).
- Gossen's second law can be proved graphically or by the method of Lagrange.
- Marshallian demand functions.
- They are the solutions of the following utility maximisation problem: maximise $u\left(x_{1}, x_{2}\right)$ under the budget restriction $p_{1} x_{1}+p_{2} x_{2} \leq m$.
- Denoted by $\tilde{x}_{1}\left(p_{1}, p_{2} ; m\right), \quad \tilde{x}_{2}\left(p_{1}, p_{2} ; m\right)$.
- They can be determined by solving

$$
p_{1} x_{1}+p_{2} x_{2}=m,
$$

and an additional condition. These conditions are:

* For cobb-douglas and quasi-linear: $p_{1} / p_{2}=\frac{\partial u}{\partial x_{1}} / \frac{\partial u}{\partial x_{2}}$ (Gossen's second law).
* For leontief: being at a kiknk-point, i.e. $x_{1} / \alpha_{1}=x_{2} / \alpha_{2}$ holds (optimum at kink).
* For Solow: optimum is one boundary point or whole budget line is optimal.
* For Maximum: optimum is one or two boundary points.
- For cobb-douglas:

$$
\tilde{x}_{1}\left(p_{1}, p_{2} ; m\right)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} \frac{m}{p_{1}}, \quad \tilde{x}_{2}\left(p_{1}, p_{2} ; m\right)=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} \frac{m}{p_{2}} .
$$

- Attention: the marshallian demand of a quasi-linear good is independent of the income if this income is large enough (and for such incomes often can be determined with Gossens's second law).

4. Types of goods.

- Consider a price change or income change of good $i$. Good $i$ is called
- giffen, if $p_{i} \uparrow \Rightarrow \tilde{x}_{i} \uparrow$. In a formula: $\frac{\partial \tilde{x}_{i}}{\partial p_{i}}>0$.
- ordinary, if $p_{i} \uparrow \Rightarrow \tilde{x}_{i} \downarrow$. In a formula: $\frac{\partial \tilde{x}_{i}}{\partial p_{i}}<0$.
- normal, if $m \uparrow \Rightarrow \tilde{x}_{i} \uparrow$. In a formula: $\frac{\partial \tilde{x}_{i}}{\partial m}>0$.
- inferior, if $m \uparrow \Rightarrow \tilde{x}_{i} \downarrow$. In a formula: $\frac{\partial \tilde{x}_{i}}{\partial m}<0$.
- Consider two goods $i$ and $j$. Good $i$ is called
- a substitute for good $j$, if $p_{j} \uparrow \Rightarrow \tilde{x}_{i} \uparrow$.
- a complement for good $j$, if $p_{j} \uparrow \Rightarrow \tilde{x}_{i} \downarrow$.

5. Elasticity.

- Setting: variable $b$ depends on variable $a$, i.e. a function $b(a)$.
- Elasticity is measure for how sensible $b$ depends on $a$. Elasticity should be independent of units. Two types of elasticity: segment and point elasticity. We only deal with point elasticities.
- Formula for point elasticity

$$
\epsilon=\frac{d b}{d a} \frac{a}{b}
$$

Interpretation: relative change of $b$ divided by relative change of $a$.

- $-|\epsilon|<1$ : inelastic; $|\epsilon|>1$ : elastic.
- In case of an affine function, i.e. $q=\alpha p+\beta$ (with $\alpha<0$ and $\beta>0$ ) and $p$ on the ordinate, each point above middle of graph is elastic and each point below is inelastic. In middle the elasticity is -1 .
- Good to know: $b=A a^{\alpha}$ has $\epsilon=\alpha$.
$-\epsilon=\frac{d \ln b}{d \ln a}$.
- Consider the price elasticity of demand: $\epsilon=\frac{d q}{d p} \frac{p}{q}$.
- Revenue $R(p)=p \cdot q(p)$.
- $\frac{d R}{d p} \frac{p}{R}=1+\epsilon$.
- If inelastic, then $p \uparrow \Rightarrow R \uparrow$.
- If elastic, then $p \uparrow \Rightarrow R \downarrow$.
- Perfect inelastic demand curve: curve is vertical. Perfect elastic demand curve: curve is horizontal.
- Consider a marshallian demand function $\tilde{x}_{i}$. Income elasticity of demand $\eta_{i}=\frac{\partial \tilde{x}_{i}}{\partial m} \frac{m}{\tilde{x}_{i}}$.
- Luxury good $i: \eta_{i}>1$.
- Necessary good $i: \eta_{i}<1$.

6. Market demand and partial equilibrium.

- Setting: decreasing demand function $D(p)$ and increasing supply function $S(p)$.
- Inverse demand function $P(Q)$.
- Without taxes equilibrium price $p^{\star}$ is determined by

$$
S\left(p^{\star}\right)=D\left(p^{\star}\right)
$$

- Equilibrium with taxes:
- Two prices: $p_{D}$ (price buyer pays) and $p_{S}$ (price seller gets). In case of a positive quantity $\operatorname{tax}: p_{D}=p_{S}+t$ :
- equilibrium prices determined by

$$
p_{D}^{\star}=p_{S}^{\star}+t, \quad D\left(p_{D}^{\star}\right)=S\left(p_{S}^{\star}\right)
$$

- result $p_{S}^{\star} \leq p^{\star} \leq p_{D}^{\star}$;
$-p_{D}^{\star}-p^{\star}$ is part of tax passed along the consumer; it is the smaller the more elastic $D$ and the more inelastic $S$.
$p^{\star}-p_{S}^{\star}$ is part of tax passed along the producer; it is the smaller the more elastic $S$ and the more inelastic $D$.
- Deadweight loss is the loss of consumers' and produces' surplus due to the tax.

7. Returns to scale for production function $f\left(k_{1}, k_{2}\right)$.

- Constant returns to scale $f\left(t k_{1}, t k_{2}\right)=t f\left(k_{1}, k_{2}\right)$ for all $t>1$.

Increasing returns to scale $f\left(t k_{1}, t k_{2}\right)>t f\left(k_{1}, k_{2}\right)$ for all $t>1$.
Deceasing returns to scale $f\left(t k_{1}, t k_{2}\right)<t f\left(k_{1}, k_{2}\right)$ for all $t>1$.

-     - For cobb-douglass production function $A k_{1}^{\beta_{1}} k_{2}^{\beta_{2}}$ :
$\beta_{1}+\beta_{2}=1$ : constant returns to scale.
$\beta_{1}+\beta_{2}>1$ : increasing returns to scale.
$\beta_{1}+\beta_{2}<1$ : decreasing returns to scale.
- Leontief and solow production functions have constant returns to scale.

8. Cost minimisation.

- Isoquant: set of production factor bundles with same output
- Technical rate of substitution:

$$
\mathrm{TRS}:=\frac{\partial f}{\partial k_{1}} / \frac{\partial f}{\partial k_{2}}
$$

In case $k_{2}\left(k_{1}\right)$ is an isoquant,

$$
\mathrm{TRS}=-\frac{d k_{2}}{d k_{1}}
$$

- Conditional production factor demand functions

$$
\tilde{k}_{1}\left(w_{1}, w_{2} ; q\right), \quad \tilde{k}_{2}\left(w_{1}, w_{2} ; q\right)
$$

are the solutions of the cost minimisation problem. Each of the above specific production functions has its own solving conditions for the cost minimisation problem. One condition always is

$$
f\left(k_{1}, k_{2}\right)=q
$$

Additional conditions:

- Cobb-douglas and quasi-linear: $f\left(k_{1}, k_{2}\right)=q, \quad w_{1} / w_{2}=\frac{\partial f}{\partial k_{1}} / \frac{\partial f}{\partial k_{2}}$.
- For leontief: being at a kink-point.
- For Solow: optimum is one boundary point or whole isoquant is optimal.
- For Maximum: optimum is one or two boundary points.
- Cost function: $c\left(q ; w_{1}, w_{2}\right)=w_{1} \tilde{k}_{1}\left(w_{1}, w_{2} ; q\right)+w_{2} \tilde{k}_{2}\left(w_{1}, w_{2} ; q\right)$.
- Various cost functions: fixed costs $c(0)$, marginal costs $\frac{d c}{d q}$, variable costs $c(q)-c(0)$, average costs $\frac{c(q)}{q}$, average variable costs $\frac{c(q)-c(0)}{q}$.
- Increasing returns to scale leads to decreasing average costs. Decreasing returns to scale leads to increasing average costs. Constant returns to scale leads to constant average costs.
- Principle of 'the marginal leads the average': as long as the marginal is larger than the average, the average increases and as long as the marginal is less than the average, the average decreases.
- In the short term some production factors are fixed. In the long term there are no fixed costs.

9. Profit maximisation.

- profit maximisation implies cost minimisation.

Input perspective: profit function $\pi\left(k_{1}, k_{2}\right)=p f\left(k_{1}, k_{2}\right)-\left(w_{1} k_{1}+w_{2} k_{2}\right)$.
Output perspective: profit function $\Pi(q)=p q-c\left(q ; w_{1}, w_{2}\right)$.
Both perspectives give the same results; this is intuitively clear (but not formally).

- Production factor functions

$$
\bar{k}_{1}\left(p ; w_{1}, w_{2}\right), \quad \bar{k}_{2}\left(p ; w_{1}, w_{2}\right)
$$

are the solutions of the profit maximisation problem. For input perspective they can for cobbdouglas production functions (and other well behaved functions) be determined by solving:

$$
p \frac{\partial f}{\partial k_{1}}=w_{1}, \quad p \frac{\partial f}{\partial k_{2}}=w_{2}
$$

And for output perspective by solving:

$$
p=c^{\prime}(q)
$$

- Profit maximisation is (for arbitrary prices) not compatible with constant and with increasing returns to scale. (This one can easily check for the production function $f(k)=k^{\alpha}$.)
- Short term: Let $p^{\star}$ be the minimum of the average variable cost curve: this is the shutdown price. Supply curve is marginal cost curve for $p \geq p^{\star}$. For $p<p^{\star}$ supply is zero.


[^0]:    ${ }^{1}$ In the book and elsewhere in economics also MRS is defined as $-\frac{\partial u}{\partial x_{1}} / \frac{\partial u}{\partial x_{2}}$, i.e. with a minus sign.

