Advanced Microeconomics

P. v. Mouche

September 2014

Consider the n+1 points of $H = \{0, 1, ..., n\}$ on the real line, to be referred to as *vertices*. Two players simultaneously and independently choose a vertex. If player 1 chooses vertex x_1 and player 2 vertex x_2 , then:

<u>Case w = 1</u>: the payoff of player *i*, $f_i(x_1, x_2)$, is the number of vertices that is the closest to his choice x_i ; however, a vertex that has equal distance to both players contributes only 1/2.

General $w \in [0,1]$: to $f_i(x_1, x_2)$ exactly the same vertices as in the above for w = 1 contribute. Take such a vertex. If it is at distance d to x_i , then it contributes w^d if it is not a shared vertex, and otherwise it contributes $w^d/2$.

- 1. Suppose n is odd and w = 1.
 - a. Determine the best reply correspondences.
 - b. Determine the nash equilibria.
 - c. Determine the weakly pareto-efficient strategy profiles.
- 2. Suppose n = 2 and w = 1/2.
 - a. Determine the game by representing it as a 3×3 -bi-matrix game with at the first row strategy 0, the second row strategy 1, etc.
 - b. Determine the best reply correspondences.
 - c. Determine the nash equilibria and the strongly pareto-efficient strategy profiles.
- 3. Consider again the situation where n = 2 and w = 1/2. But now suppose that first player 1 makes his choice and then player 2 after having observed the choice of his opponent.
 - a. Present the game tree.
 - b. Determine the subgame perfect nash equilibria.

Please handle in before 3 October 2014.