Advanced Microeconomics

P. v. Mouche

September 2014

Consider the $n+1$ points of $H=\{0,1, \ldots, n\}$ on the real line, to be referred to as vertices. Two players simultaneously and independently choose a vertex. If player 1 chooses vertex x_{1} and player 2 vertex x_{2}, then:

Case $w=1$: the payoff of player $i, f_{i}\left(x_{1}, x_{2}\right)$, is the number of vertices that is the closest to his choice x_{i}; however, a vertex that has equal distance to both players contributes only $1 / 2$.

General $w \in[0,1]$: to $f_{i}\left(x_{1}, x_{2}\right)$ exactly the same vertices as in the above for $w=1$ contribute. Take such a vertex. If it is at distance d to x_{i}, then it contributes w^{d} if it is not a shared vertex, and otherwise it contributes $w^{d} / 2$.

1. Suppose n is odd and $w=1$.
a. Determine the best reply correspondences.
b. Determine the nash equilibria.
c. Determine the weakly pareto-efficient strategy profiles.
2. Suppose $n=2$ and $w=1 / 2$.
a. Determine the game by representing it as a 3×3-bi-matrix game with at the first row strategy 0 , the second row strategy 1 , etc.
b. Determine the best reply correspondences.
c. Determine the nash equilibria and the strongly pareto-efficient strategy profiles.
3. Consider again the sitution where $n=2$ and $w=1 / 2$. But now suppose that first player 1 makes his choice and then player 2 after having observed the choice of his opponent.
a. Present the game tree.
b. Determine the subgame perfect nash equilibria.

Please handle in before 3 October 2014.

