Game Theory

P. v. Mouche

Exercise set 3

Exercise 1 Consider the following 2-player extensive form game given by the game tree

a. How many, and which, strategies does player 1 have? How many, and which, strategies does player 2 have?
b. Give a completely elaborated plan of playing for player 1 that is not a strategy.
c. Determine a normal form for this game.
d. Determine for each player the strictly dominant strategies
e. Determine the Nash equilibria.

Exercise 2 Consider the following 2-player extensive form game given by the game tree

a. Show that there are three Nash equilibria.
b. Which Nash equilibrium is "the best"?

Exercise 3 Consider the following game between two (rational and intelligent) players. There is a pillow with 100 matches. They alternately remove 1,2 or 4 matches from it. (Player 1 begins.) The player who makes the last move wins. What is the value of this game?

Short solutions.

Solution 1 a. Player 1 has 4 strategies and player 2 has 2 strategies.
b. Playing R.
c. This is the bimatrix game $\left(\begin{array}{ccc} & l & r \\ L A & 1 ; 2 & 3 ; 2 \\ L B & 1 ; 2 & -1 ; 3 \\ R A & 1 ; 5 & 1 ; 5 \\ R B & 1 ; 5 & 1 ; 5\end{array}\right)$.
d. There are no strictly dominant strategies.
e. $(L A, l),(R A, l),(R B, l)$ and $(L A, r)$.

Solution 2 a. A normal form is $\left(\begin{array}{ccc} & l & r \\ L A & 1 ; 1 & 3 ; 2 \\ L B & 1 ; 1 & -3 ; 3 \\ R A & 1 ; 5 & 1 ; 5 \\ R B & 1 ; 5 & 1 ; 5\end{array}\right)$. Nash equilibria: $(R A, l),(R B, l)$ and $(L A, r)$.
b. $(L A, r)$. Reason: if player 1 has to move for the second time, then he plays A. Player 2 is aware of this, and therefore, if he has to move, plays r. Player 1 is aware of this and therefore plays L as first move.

Solution 3 The loosing positions are those with number of matches that when divided by 3 has remainder 0 . As 100 divided by 3 has remainder 1 , player 1 can win. So the value is +1 .

