Game Theory

P. v. Mouche

Exercise set 2

Exercise 1 Determine which of the following bi-matrix games are a prisoner's dilemma.
$a .\left(\begin{array}{ccc}3 ;-1 & 3 ; 1 & 6 ; 0 \\ 1 ; 0 & 3 ; 1 & 6 ; 0 \\ 2 ; 2 & 4 ; 1 & 8 ; 2\end{array}\right)$.
b. $\left(\begin{array}{ccc}1 ; 0 & 3 ; 1 & 6 ; 0 \\ 2 ; 1 & 4 ; 1 & 8 ; 1\end{array}\right)$.
c. $\left(\begin{array}{ccc}6 ; 1 & 3 ; 1 & 1 ; 5 \\ 2 ; 4 & 4 ; 2 & 2 ; 3 \\ 5 ; 1 & 6 ; 1 & 5 ; 2\end{array}\right)$.
d. $\left(\begin{array}{cc}-1 ;-1 & 2 ; 0 \\ 0 ; 2 & 3 ; 3\end{array}\right)$.
e. $\left(\begin{array}{cc}2 ; 2 & -1 ; 3 \\ 3 ;-1 & 0 ; 0\end{array}\right)$.

Exercise 2 The following true/false statements concern an arbitrary bi-matrix game.
a. This concerns a game with two players.
b. The game has at least one Nash equilibrium.
c. The game has a strictly dominant strategy.
d. The game has a fully cooperative strategy profile.
e. The has a weakly Pareto efficient strategy profile.
f. Each fully cooperative strategy profile is weakly Pareto efficient.
g. A strictly dominant strategy is fully cooperative.
h. If the game is a prisoners' dilemma, then it has a Nash equilibrium.
i. It is impossible that a weakly Pareto inefficient strategy profile is a Nash equilibrium.

Exercise 3 The following true/false statements deal with the bi-matrix game

$$
\left(\begin{array}{ccc}
3 ; 6 & 6 ; 5 & 7 ;-3 \\
-6 ; 2 & 5 ; 3 & 5 ; 4
\end{array}\right) .
$$

a. The row-player has 2 strategies.
b. There are 6 strategy profiles.
c. The strategy profile $(1,1)$ is a Nash equilibrium.
d. The row-player has a strictly dominant strategy.
e. There is a weakly Pareto inefficient Nash equilibrium.
f. The column-player has a strictly dominant strategy.
g. This game is a prisoners' dilemma.
h. Playing row 1 and column 3 is a fully cooperative strategy profile
i. This game is a zero-sum game.
j. $(1,2)$ is a weakly Pareto efficient strategy profile.

Exercise 4 A new notion: a strict Nash equilibrium is a Nash equilibrium with the property that if a player deviates from his strategy in this Nash equilibrium, his payoff will become less.

Given the following bimatrix game:

$$
\left(\begin{array}{ccc}
3 ; 8 & -4 ; 8 & 2 ; 3 \\
1 ; 7 & 2 ; 6 & 8 ; 1 \\
3 ; 3 & 4 ; 4 & 2 ; 2 \\
1 ; 1 & 1 ;-1 & 1 ;-1
\end{array}\right)
$$

a. Determine the best reply correspondences.
b. Determine the strictly dominant strategies.
c. Determine the Nash equilibria.
d. Determine the strict Nash equilibria.
e. Determine the weakly Pareto-efficient strategy profiles.

Exercise 5 Consider the Hotelling Game with sites $0,1, \ldots, m$ where m is even.
a. Show that $f_{1}\left(n-x_{1}, n-x_{2}\right)=f_{1}\left(x_{1}, x_{2}\right)$.
b. Show that for the payoff function f_{1} of player 1 the following formula holds:

$$
f_{1}\left(x_{1}, x_{2}\right)\left\{\begin{array}{l}
\frac{x_{1}+x_{2}+1}{2} \text { if } x_{1}<x_{2} \\
\frac{m+1}{2} \text { if } x_{1}=x_{2} \\
m+1-\frac{x_{1}+x_{2}+1}{2} \text { if } x_{1}>x_{2}
\end{array}\right.
$$

c. Show that ($m / 2, m / 2$) is a Nash equilibrium.

Short solutions.
Solution 1 Only the game in e.

Solution 2 aT bF cF dT eT fT gF hT iF.

Solution 3 aT bT cT dT eF fF gF hF iF jT.
Solution 4 a. $R_{1}(1)=\{1,3\}, R_{1}(2)=\{3\}, R_{1}(3)=\{2\}, R_{2}(1)=\{1,2\}, R_{2}(2)=\{1\}, R_{2}(3)=\{2\}, R_{2}(4)=\{1\}$.
a. Strictly dominant strategies: do not exist.
b. They are $(1,1)$ (i.e. row 1 and column 1) and $(3,2)$.
c. $(3,2)$.
e. $(1,1),(1,2)(2,3),(3,2)$.

Solution 5 a. Because of location symmetry.
b. Make a figure and count the contributions.It is a good idea to distinguish between $x_{1}+x_{2}$ odd and $x_{1}+x_{2}$ even.
c. We have to show that $f_{1}\left(x_{1}, m / 2\right) \leq f_{1}(m / 2, m / 2)$ for all x_{1} and that $f_{2}\left(m / 2, x_{2}\right) \leq f_{2}(m / 2, m / 2)$ for all x_{2}. We prove here the first statement; the second follows in the same way.

For $x_{1}=m / 2$, the statement is clear. For $x_{1}<m / 2$, we have, using part a, $f_{1}\left(x_{1}, m / 2\right)=\frac{x_{1}+\frac{m}{2}+1}{2}=$ $\frac{x_{1}}{2}+\frac{m}{4}+\frac{1}{2}<\frac{m}{4}+\frac{m}{4}+\frac{1}{2}=\frac{m+1}{2}=f_{1}\left(\frac{m}{2}, \frac{m}{2}\right)$. And for $x_{1}>m / 2$, we have, using part a, $f_{1}\left(x_{1}, m / 2\right)=$ $m+1-\frac{x_{1}+\frac{m}{2}+1}{2}=m+1-\frac{x_{1}}{2}-\frac{1}{2}-\frac{m}{4}=\frac{3}{4} m+\frac{1}{2}-\frac{x_{1}}{2}>\frac{3}{4} m+\frac{1}{2}-\frac{m}{4}=\frac{m+1}{2}=f_{1}\left(\frac{m}{2}, \frac{m}{2}\right)$.

