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Basic definitions

A set is any collection of elements. Sets can be defined by enumeration of their ele-
ments, e.g., S= {2, 4, 6, 8}, or by description of their elements, e.g., § = {x | xis a positive
even integer greater than zero and less than 10}. When we wish to denote membership or
inclusion in a set, we use the symbol . For example, if § = {2, 5, 7}, we say that 5 € S.

A set S is a subset of another set T if every element of 5 is also an element of 7. We
write S C T (Sis contained in 7) or T D S (T contains 5). If SC T, thenxe S= xe T.

Two sets are equal sets if they each contain exactly the same elements. We write
S= T whenever x€c S= xe T and xe T= x 5. Thus, Sand T are equal sets if and
only if S € Tand T C S. For example, if S = {integers, x | ¥ = 1} and T = {—1, 1}, then
S=T.

A set 5is empty or is an empty set if it contains no elements at all. For example,
if A= {x| x> =0and x > 1}, then A is empty. We denote the empty set by the symbol @
and write 4 = ¢.

n-space is defined as the set product

]R”E]R}:]R‘x xR ={(x,....x5) | xR, i=1,..., 0}

n times




Convex Sets

Convex Sets in B”

S c R” js a convex set ifforallx! € § and x? S, we have
x! —I—(l—.:‘ju!:2 e 5

for all t in the interval) < t < 1.

The Intersection of Convex Sets is Convex

Let § and T be convex sets in B”. Then SN T is a convex set.



Open and Closed ¢-Balls

I. The open &-ball with centre x? and radius ¢ = 0 (a real number) is the subset of
points inR":

Bx)Y=xeR"| dx%x)<e }
e
strictly less than

2. The closed ¢ -ball with centre X° and radius ¢ > 0 is the subset of points in R

B‘;‘f(x”] =[x eR"”| dx', x)y<e )
"_v_l"
less than or equal to
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Open Sets in "
S C R? is an open set if, for all x € 8, there exists some ¢ > () such that B.(x) C §.

On Open Sets in R”

1. The empty set, ), is an open set.
Z. The entire space, R", is an open set.
3. The union of open sets is an open set.

4. The intersection of any finite number of open sets is an open set.
Closed Sets in R"

S is a closed set if its complement, S, is an open set.

On Closed Sets in R”
1. The empty set, ¥, is a closed set.

2. The entire space, R", is a closed set.
3. The union of any finite collection of closed sets is a closed set.

4. The intersection of closed sets is a closed set.

Bounded Sets

A set § in R is called bounded if it is entirely contained within some &-ball (either open
or closed). That is, S is bounded if there exists some ¢ = 0 such that S C B, (X) for some
x € R”.



Continuity

A function f: R — R is continuous at a point & if, for all £ > 0, there exists
a 8§ > 0 such that d(x, X) < 8 implies that d(f(x), f(x")) < . A function is
called a continuous function if it is continuous at every point in its domain.

A 4
f(x" + & fex)
AN e iome sy i
J(x7) fx" + &
fx% ¢’ Fx%)
fix%) - ¢




Welerstrass Theorem

(Weierstrass) Existence of Extreme Values

Let f: 5§ — R be a continuous real-valued mapping where 5 is a non-empty compact
subset of R". Then there exists a vector X* € S and a vector X € S such that

f(X) = f(x) < f(x*) forall xe S.




Real-Valued Functions

f: D — Ris a real-valued function if [) is any set and R C .

Increasing, Strictly Increasing and Strongly Increasing Functions

Let f: D— R, where D is a subset of R". Then f is increasing if f (xu] > f{xl) whenever

x! => x!. If, in addition, the inequality is strict whenever x! > xl, then we say that f is

strictly increasing. If, instead, £ {KD] = fi {11] wheneverx® and x! are distinct and x° > x! ,

then we say that f is strongly increasing.

Decreasing, Strictly Decreasing and Strongly Decreasing Functions

Let f: D — R, where D is a subset of R". Then f is decreasing if f (xu} < f {11] whenever

x0 > x!. If, in addition, the inequality is strict whenever xU > xl, then we say that f is

strictly decreasing. If, instead, f {XD} i {11) whenever x° andx! are distinct and x° > xl,

then we say that f is strongly decreasing.



Level Sets

Level Sets

L(y") is a level set of the real-valued function f: D — RiffL(}") = {x| x € D, f(x) = "},
where € RC R.

L(y%
L(y"

L(¥%) = {(xy,x5) | f(xy, x5) = ¥

X3
A

= Xy

Superior and Inferior Sets

1. 5()/[]) ={x|xe D fix)= _yﬂ} is called the superior set for fevefyo,

2 T (}ﬁ) ={x|xe D f(x) = }ﬂ'} is called the inferior set for level )ﬁ

3 80" = (x| x € D, f(x) >y} is called the strictly superior set for level y°.
4. IT'(") = (x| x e D, f(x) < P} is called the strictly inferior set for level y°.



Concave Functions

Real-Valved Functions Over Convex Sets

Throughout this section, whenever f: ) — R is a real-valued function, we will assume
D c R is aconvex set. When we takex! € Dandx? € D, we will letx' = t&x! + (1 — .:‘]:{E,

for t € [0, 1], denote the convex combination of x! and x*. Because D is a convex set, we
knowthatx' € D.

Concave Functions

f: D —s Ris a concave function if for all x! . = D

fxh = #fxhHy + (1 — ofxt) VYeel0,1].

fx)
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Points On and Below the Graph of a Concave Function Form a Convex Set

Let A= {(X,y) | x € D, f(x) = y} be the set of points ‘on and below’ the graph of f: D —
R where D C R”" is a convex set and R C . Then,

fis a concave function <= A is a convex set.

Strictly Concave Functions

f: D— Ris a strictly concave function iff for all x' # x% in D,

f(xY) = tf(x") + (1 — HFx®) forall t € (0, 1).
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Quasiconcave Functions’

f: D — R is quasiconcave iff, for all x! andx® in D,
f(xh) = min[£(x)), f(x%)] forall t € [0, 1].

Quasiconcavity and the Superior Sets

f: D — R is a quasiconcave function iff S(y) is a convex set for all y € R.

\ L(x?)
L(x!)
L(xH -

(a) (b)

Figure Al.30. Level sets for quasiconcave functions. (a) The function is
quasiconcave and increasing. (b) The function is quasiconcave and decreasing.
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Concavity Implies Quasiconcavity

A concave function is always quasiconcave. A strictly concave function is always strictly

guasiconcave.

Convex and Strictly Convex Functions
1. f: D— R is a convex function iff. for all x', x* in D,
f(x') < tf(x") + (1 — HF(x?) forallt € [0, 1].
2 f: D—s Ris a strictly convex function iff, for allx' # x° in D,
f(xh) < tf(x") + (1 — OHAX®) for all t € (0, 1).

Concave and Convex Functions

f(x) is a (strictly) concave function if and only if —f(X) is a (strictly) convex function.

Points On and Above the Graph of a Convex Function Form a Convex Set

Let A* = {(x, y) | x € D, f(x) < y} be the set of points ‘on and above the graph of f: D —
R,| where D C R" is a convex set and R C . Then

f is a convex function < A* is a convex set. 3



Quasiconvex and Strictly Quasiconvex Functions®

1. A function f: D — R is quasiconvex iff, for all x! i xZ in D,
f(x") = max[f(x'), f(x*)]  Vtel0,1].

2. A function f: D — R is strictly quasiconvex iff, for all x! #= X% in D
(x5 < max[F(x), F(x3)] VY te(0,1).

Quasiconvexity and the Inferior Sets

f: D — Ris a quasiconvex function iff I(y) is a convex set for all y € K.

(a) (b)

Figure Al.34. Quasiconvex functions have convex inferior sets. Strictly
quasiconvex functions have no linear segments in their level sets. (a) Strictly
quasiconvex and increasing. (b) Strictly quasiconvex and decreasing.
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Summary

f is concave <—> the set of points beneath the graph is convex
f is convex <> the set of points above the graph is convex
f quasiconcave <—> superior sets are convex sets

f quasiconvex <—> inferior sets are convex sets

f concave = f quasiconcave

f convex = f quasiconvex

f (strictly) concave & —f (strictly) convex

f (strictly) quasiconcave <= —f (strictly) quasiconvex

15



Calculus
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Functions of a single variable

Concavity and First and Second Derivatives

Let D be a non-degenerate interval of real numbers on the interior of which f is twice
continuously differentiable. The following statements 1 to 3 are equivalent:

1. f is concave.
2. '(x) =0 Y non-endpoints x € D.
3 Forall 2 eD: fix) =f(@)+F(P)(x—4 VxeD

Moreover,

4. Iff'(x) <0 V non-endpoints x € D, then [ is strictly concave.

17



Functions of several variables

Ai1(x)  fi2(x) ... (%)
Hx) = £21x) f2(x) ... fon(X) The Hessian of a function
B : j . : of several variables

Young’s Theorem

For any twice continuously differentiable function f(X),

= The Hessian is

fx) 9fx) . symmetric
= ¥ iandj.

d x;0 x; N 070 x;
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Homogeneous Functions

Homogeneous Functions

A real-valued function f(X) is called homogeneous of degree k if

f(x) =*f(x)  forallt> 0.
Two special cases are worthy of note: f(X) is homogeneous of degree 1, or linear homo-

geneous, if f(tx) = tf(x) for all t = 0, it is homogeneous of degree zero if f(tx) = f(x) for
all ¢ = 0.

Euler’s Theorem

f(x) is homogeneous of degree k if and only if

i1
d f(x)
kf(x) = Z X for all x.
=1 HI}
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Unconstrained Optimization

Necessary Conditions for Local Interior Optima in the Single-Variable Case

Let f(x) be a twice continuously differentiable function of one variable. Then f(x) reaches
a local interior

I.  maximum at x* = f(x*) =0 (FONOC),
= f'(x*) =0 (SONC).
2. minimumatx = f(x) =0 (FONQO),
= '(x) =0 (S0ONC).

First-Order Necessary Condition for Local Interior Optima of Real-Valued Functions

If the differentiable function f(X) reaches a local interior maximum or minimum at X*, then
x* solves the system of simultaneous equations,

af(x*)
=0
dx1
¥
df(x™) _o
0x7
af(x*
(x*) _o.

dxp
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Unconstrained Optimization

Second-Order Necessary Condition for Local Interior Optima of Real-Valued

Functions
Let f(x) be twice continuously differentiable.

1. Iff(x) reaches a local interior maximum at X*, then H(x*) is negative semidefi-
nite.

2. Iff(x) reaches a local interior minimum at X, then H(X) is positive semidefinite.

Strict Concavity/Convexity and the Uniqueness of Global Optima

1. If x* maximises the strictly concave function f, then X* is the unique global
maximiser; i.e, f(x*) = f(X) Vx € D, x # x*.

2. Ifx minimises the strictly convex function f, then X is the unique global minimiser,

ie,f(X) = f(x)Vxe D, x #x*
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Constrained Optimization w/
Equality Constrains

max f(xy, x2) subject to glx, x) = 0.
X].X2

L(x1, x2, A) = f(x1, x2) — Ag(x1, x2).

oL Af(xh %) L dg(xx)

— \. — {]
dx1 dxq ’ dx1
L  Of(x,xp) ,0g(x.x;) 0
dxz  Oxp " ix2

L .
— =gx1. x%5) =0.

da



Envelope Theorem

Describes how the optimal value of the objective function in a parametrized
optimization problem changes as one of the parameters changes

Letf, h,....R"xR" — R bea C* functions. Let X" (a) = (x; (a),%;(a),-... X, (2))

denote the solution of the problem of:

max f (x,a)

st

h(x,a)=0;i=1,..k

for any fixed choice of the paramter a.

Suppose that X" (a) and the Lagrange multipliers ¢, (a),..., &, (a)are C* functions and that
the NDCQ holds. Then:

. f(x'(a).a)= %(x*(a),y(a),a),

where L is teh natural Lagrangian for this problem.

23



Comparative Statics

Consider a system of equations with 2 unknowns (x and y) and a
parameter t:

f(xyt)=0
g(x,y,t)=0
Determine
dx
dt
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Inverse Function Theorem

Let f beaC" defined on an interval Iin R*. If f '(x) =0
for all x e |, then
a.) f Isinvertible on |

b.) its inverse g is a C* function on the interval f (1)
c.) for all z in the domain of the inverse function g
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