Math Review

Dušan Drabik de Leeuwenborch 2105 <u>Dusan.Drabik@wur.nl</u>

The material contained in these slides draws heavily on: Geoffrey A. Jehle and Philip J. Reny (2011). Advanced Microeconomic Theory (3rd Edition). Prentice Hall, 672 p.

Basic definitions

A set is any collection of elements. Sets can be defined by *enumeration* of their elements, e.g., $S = \{2, 4, 6, 8\}$, or by *description* of their elements, e.g., $S = \{x \mid x \text{ is a positive even integer greater than zero and less than 10}. When we wish to denote membership or inclusion in a set, we use the symbol <math>\in$. For example, if $S = \{2, 5, 7\}$, we say that $5 \in S$.

A set *S* is a **subset** of another set *T* if every element of *S* is also an element of *T*. We write $S \subset T$ (*S* is contained in *T*) or $T \supset S$ (*T* contains *S*). If $S \subset T$, then $x \in S \Rightarrow x \in T$.

Two sets are **equal sets** if they each contain exactly the same elements. We write S = T whenever $x \in S \Rightarrow x \in T$ and $x \in T \Rightarrow x \in S$. Thus, *S* and *T* are equal sets if and only if $S \subset T$ and $T \subset S$. For example, if $S = \{\text{integers}, x \mid x^2 = 1\}$ and $T = \{-1, 1\}$, then S = T.

A set *S* is **empty** or is an **empty set** if it contains no elements at all. For example, if $A = \{x \mid x^2 = 0 \text{ and } x > 1\}$, then *A* is empty. We denote the empty set by the symbol \emptyset and write $A = \emptyset$.

n-space is defined as the set product

$$\mathbb{R}^n \equiv \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}} \equiv \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R}, i = 1, \dots, n\}.$$

Convex Sets

Convex Sets in \mathbb{R}^n

 $S \subset \mathbb{R}^n$ is a convex set if for all $\mathbf{x}^1 \in S$ and $\mathbf{x}^2 \in S$, we have

 $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in S$

for all t in the interval $0 \le t \le 1$.

The Intersection of Convex Sets is Convex

Let S and T be convex sets in \mathbb{R}^n . Then $S \cap T$ is a convex set.

Open and Closed ε-Balls

1. The open ε -ball with centre \mathbf{x}^0 and radius $\varepsilon > 0$ (a real number) is the subset of points in \mathbb{R}^n :

 $B_{\varepsilon}(\mathbf{x}^{0}) \equiv \{\mathbf{x} \in \mathbb{R}^{n} \mid \underbrace{d(\mathbf{x}^{0}, \mathbf{x}) < \varepsilon}_{strictly \ less \ than} \}$

2. The closed ε -ball with centre \mathbf{x}^0 and radius $\varepsilon > 0$ is the subset of points in \mathbb{R}^n :

 $B_{\varepsilon}^{*}(\mathbf{x}^{0}) \equiv \{\mathbf{x} \in \mathbb{R}^{n} \mid \underbrace{d(\mathbf{x}^{0}, \mathbf{x}) \leq \varepsilon}_{less \ than \ or \ equal \ to} \}$

Open Sets in \mathbb{R}^n

 $S \subset \mathbb{R}^n$ is an open set if, for all $\mathbf{x} \in S$, there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subset S$.

On Open Sets in \mathbb{R}^n

- 1. The empty set, Ø, is an open set.
- *2.* The entire space, \mathbb{R}^n , is an open set.
- 3. The union of open sets is an open set.
- 4. The intersection of any finite number of open sets is an open set.

Closed Sets in \mathbb{R}^n

S is a closed set if its complement, S^c , is an open set.

On Closed Sets in \mathbb{R}^n

- 1. The empty set, Ø, is a closed set.
- *2.* The entire space, \mathbb{R}^n , is a closed set.
- 3. The union of any finite collection of closed sets is a closed set.
- 4. The intersection of closed sets is a closed set.

Bounded Sets

A set S in \mathbb{R}^n is called bounded if it is entirely contained within some ε -ball (either open or closed). That is, S is bounded if there exists some $\varepsilon > 0$ such that $S \subset B_{\varepsilon}(\mathbf{x})$ for some $\mathbf{x} \in \mathbb{R}^n$.

Continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is *continuous at a point* x^0 if, for all $\varepsilon > 0$, there exists a $\delta > 0$ such that $d(x, x^0) < \delta$ implies that $d(f(x), f(x^0)) < \varepsilon$. A function is called a *continuous function* if it is continuous at every point in its domain.

Weierstrass Theorem

(Weierstrass) Existence of Extreme Values

Let $f: S \to \mathbb{R}$ be a continuous real-valued mapping where S is a non-empty compact subset of \mathbb{R}^n . Then there exists a vector $\mathbf{x}^* \in S$ and a vector $\tilde{\mathbf{x}} \in S$ such that

f(x) f(x)

 $f(\tilde{\mathbf{x}}) \leq f(\mathbf{x}) \leq f(\mathbf{x}^*)$ for all $\mathbf{x} \in S$.

Real-Valued Functions

$f: D \to R$ is a real-valued function if D is any set and $R \subset \mathbb{R}$.

Increasing, Strictly Increasing and Strongly Increasing Functions

Let $f: D \to \mathbb{R}$, where D is a subset of \mathbb{R}^n . Then f is increasing if $f(\mathbf{x}^0) \ge f(\mathbf{x}^1)$ whenever $\mathbf{x}^0 \ge \mathbf{x}^1$. If, in addition, the inequality is strict whenever $\mathbf{x}^0 \gg \mathbf{x}^1$, then we say that f is strictly increasing. If, instead, $f(\mathbf{x}^0) > f(\mathbf{x}^1)$ whenever \mathbf{x}^0 and \mathbf{x}^1 are distinct and $\mathbf{x}^0 \ge \mathbf{x}^1$, then we say that f is strongly increasing.

Decreasing, Strictly Decreasing and Strongly Decreasing Functions

Let $f: D \to \mathbb{R}$, where D is a subset of \mathbb{R}^n . Then f is decreasing if $f(\mathbf{x}^0) \le f(\mathbf{x}^1)$ whenever $\mathbf{x}^0 \ge \mathbf{x}^1$. If, in addition, the inequality is strict whenever $\mathbf{x}^0 \gg \mathbf{x}^1$, then we say that f is strictly decreasing. If, instead, $f(\mathbf{x}^0) < f(\mathbf{x}^1)$ whenever \mathbf{x}^0 and \mathbf{x}^1 are distinct and $\mathbf{x}^0 \ge \mathbf{x}^1$, then we say that f is strongly decreasing.

Level Sets

Level Sets

 $L(y^0)$ is a level set of the real-valued function $f: D \to R$ iff $L(y^0) = \{x \mid x \in D, f(x) = y^0\}$, where $y^0 \in R \subset \mathbb{R}$.

Superior and Inferior Sets

S(y⁰) ≡ {x | x ∈ D, f(x) ≥ y⁰} is called the superior set for level y⁰.
 I(y⁰) ≡ {x | x ∈ D, f(x) ≤ y⁰} is called the inferior set for level y⁰.
 S'(y⁰) ≡ {x | x ∈ D, f(x) > y⁰} is called the strictly superior set for level y⁰.
 I'(y⁰) ≡ {x | x ∈ D, f(x) < y⁰} is called the strictly inferior set for level y⁰.

Concave Functions

Real-Valued Functions Over Convex Sets

Throughout this section, whenever $f: D \rightarrow R$ is a real-valued function, we will assume $D \subset \mathbb{R}^n$ is a convex set. When we take $\mathbf{x}^1 \in D$ and $\mathbf{x}^2 \in D$, we will let $\mathbf{x}^t \equiv t\mathbf{x}^1 + (1-t)\mathbf{x}^2$, for $t \in [0, 1]$, denote the convex combination of \mathbf{x}^1 and \mathbf{x}^2 . Because D is a convex set, we know that $\mathbf{x}^t \in D$.

Concave Functions

 $f: D \to R$ is a concave function if for all $\mathbf{x}^1, \mathbf{x}^2 \in D$,

 $f(\mathbf{x}^{t}) \ge tf(\mathbf{x}^{1}) + (1-t)f(\mathbf{x}^{2}) \quad \forall t \in [0, 1].$

Points On and Below the Graph of a Concave Function Form a Convex Set

Let $A \equiv \{(\mathbf{x}, y) \mid \mathbf{x} \in D, f(\mathbf{x}) \ge y\}$ be the set of points 'on and below' the graph of $f: D \rightarrow R$, where $D \subset \mathbb{R}^n$ is a convex set and $R \subset \mathbb{R}$. Then,

f is a concave function \iff *A is a convex set.*

Strictly Concave Functions

 $f: D \to R$ is a strictly concave function iff, for all $\mathbf{x}^1 \neq \mathbf{x}^2$ in D,

 $f(\mathbf{x}^{t}) > tf(\mathbf{x}^{1}) + (1-t)f(\mathbf{x}^{2})$ for all $t \in (0, 1)$.

Quasiconcave Functions⁷

 $f: D \rightarrow R$ is quasiconcave iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D,

 $f(\mathbf{x}^{t}) \geq \min[f(\mathbf{x}^{1}), f(\mathbf{x}^{2})] \text{ for all } t \in [0, 1].$

Quasiconcavity and the Superior Sets

 $f: D \to \mathbb{R}$ is a quasiconcave function iff S(y) is a convex set for all $y \in \mathbb{R}$.

Figure A1.30. Level sets for quasiconcave functions. (a) The function is quasiconcave and increasing. (b) The function is quasiconcave and decreasing.

Concavity Implies Quasiconcavity

A concave function is always quasiconcave. A strictly concave function is always strictly quasiconcave.

Convex and Strictly Convex Functions

1. $f: D \to R$ is a convex function iff, for all $\mathbf{x}^1, \mathbf{x}^2$ in D,

$$f(\mathbf{x}^{t}) \le tf(\mathbf{x}^{1}) + (1-t)f(\mathbf{x}^{2})$$
 for all $t \in [0, 1]$.

2. $f: D \to R$ is a strictly convex function iff, for all $\mathbf{x}^1 \neq \mathbf{x}^2$ in D,

$$f(\mathbf{x}^{t}) < tf(\mathbf{x}^{1}) + (1-t)f(\mathbf{x}^{2})$$
 for all $t \in (0, 1)$.

Concave and Convex Functions

 $f(\mathbf{x})$ is a (strictly) concave function if and only if $-f(\mathbf{x})$ is a (strictly) convex function.

Points On and Above the Graph of a Convex Function Form a Convex Set

Let $A^* \equiv \{(\mathbf{x}, y) \mid \mathbf{x} \in D, f(\mathbf{x}) \le y\}$ be the set of points 'on and above' the graph of $f: D \rightarrow R$, where $D \subset \mathbb{R}^n$ is a convex set and $R \subset \mathbb{R}$. Then

f is a convex function
$$\iff A^*$$
 is a convex set.

3

Quasiconvex and Strictly Quasiconvex Functions⁸

1. A function $f: D \to R$ is quasiconvex iff, for all $\mathbf{x}^1, \mathbf{x}^2$ in D,

$$f(\mathbf{x}^t) \le \max[f(\mathbf{x}^1), f(\mathbf{x}^2)] \qquad \forall \ t \in [0, 1].$$

2. A function $f: D \to R$ is strictly quasiconvex iff, for all $\mathbf{x}^1 \neq \mathbf{x}^2$ in D,

$$f(\mathbf{x}^t) < \max[f(\mathbf{x}^1), f(\mathbf{x}^2)] \qquad \forall \ t \in (0, 1).$$

Quasiconvexity and the Inferior Sets

 $f: D \to R$ is a quasiconvex function iff I(y) is a convex set for all $y \in \mathbb{R}$.

Figure A1.34. Quasiconvex functions have convex inferior sets. Strictly quasiconvex functions have no linear segments in their level sets. (a) Strictly quasiconvex and increasing. (b) Strictly quasiconvex and decreasing.

Summary

- f is concave
- f is convex
- *f* quasiconcave
- *f* quasiconvex
- f concave
- f convex

- \iff the set of points *beneath* the graph is convex
- \iff the set of points *above* the graph is convex
- \iff superior sets are convex sets
- \iff inferior sets are convex sets
 - \Rightarrow f quasiconcave
- \Rightarrow f quasiconvex
- f (strictly) concave $\iff -f$ (strictly) convex
- f (strictly) quasiconcave $\iff -f$ (strictly) quasiconvex

Calculus

Functions of a single variable

Concavity and First and Second Derivatives

Let D be a non-degenerate interval of real numbers on the interior of which f is twice continuously differentiable. The following statements 1 to 3 are equivalent:

- 1. f is concave.
- 2. $f''(x) \le 0 \quad \forall \text{ non-endpoints } x \in D.$
- 3. For all $x^0 \in D$: $f(x) \le f(x^0) + f'(x^0)(x x^0) \quad \forall x \in D$.

Moreover,

4. If $f''(x) < 0 \quad \forall$ non-endpoints $x \in D$, then f is strictly concave.

Functions of several variables

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} f_{11}(\mathbf{x}) & f_{12}(\mathbf{x}) & \dots & f_{1n}(\mathbf{x}) \\ f_{21}(\mathbf{x}) & f_{22}(\mathbf{x}) & \dots & f_{2n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1}(\mathbf{x}) & f_{n2}(\mathbf{x}) & \dots & f_{nn}(\mathbf{x}) \end{pmatrix}$$

The Hessian of a function of several variables

Young's Theorem

For any twice continuously differentiable function $f(\mathbf{x})$,

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i} \quad \forall i \text{ and } j.$$

→ The Hessian is symmetric

Homogeneous Functions

Homogeneous Functions

A real-valued function $f(\mathbf{x})$ is called homogeneous of degree k if

 $f(t\mathbf{x}) \equiv t^k f(\mathbf{x}) \qquad \text{for all } t > 0.$

Two special cases are worthy of note: $f(\mathbf{x})$ is homogeneous of degree 1, or linear homogeneous, if $f(t\mathbf{x}) \equiv tf(\mathbf{x})$ for all t > 0; it is homogeneous of degree zero if $f(t\mathbf{x}) \equiv f(\mathbf{x})$ for all t > 0.

Euler's Theorem

 $f(\mathbf{x})$ is homogeneous of degree k if and only if

$$kf(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_i} x_i$$
 for all \mathbf{x} .

Unconstrained Optimization

Necessary Conditions for Local Interior Optima in the Single-Variable Case

Let f(x) be a twice continuously differentiable function of one variable. Then f(x) reaches a local interior

1. maximum at
$$x^* \Rightarrow f'(x^*) = 0$$
 (FONC),
 $\Rightarrow f''(x^*) \le 0$ (SONC).
2. minimum at $\tilde{x} \Rightarrow f'(\tilde{x}) = 0$ (FONC),
 $\Rightarrow f''(\tilde{x}) \ge 0$ (SONC).

First-Order Necessary Condition for Local Interior Optima of Real-Valued Functions

If the differentiable function $f(\mathbf{x})$ reaches a local interior maximum or minimum at \mathbf{x}^* , then \mathbf{x}^* solves the system of simultaneous equations,

$$\frac{\partial f(\mathbf{x}^*)}{\partial x_1} = 0$$
$$\frac{\partial f(\mathbf{x}^*)}{\partial x_2} = 0$$
$$\vdots$$
$$\frac{\partial f(\mathbf{x}^*)}{\partial x_n} = 0.$$

20

Unconstrained Optimization

Second-Order Necessary Condition for Local Interior Optima of Real-Valued Functions

Let $f(\mathbf{x})$ be twice continuously differentiable.

- 1. If $f(\mathbf{x})$ reaches a local interior maximum at \mathbf{x}^* , then $\mathbf{H}(\mathbf{x}^*)$ is negative semidefinite.
- 2. If $f(\mathbf{x})$ reaches a local interior minimum at $\tilde{\mathbf{x}}$, then $\mathbf{H}(\tilde{\mathbf{x}})$ is positive semidefinite.

Strict Concavity/Convexity and the Uniqueness of Global Optima

- 1. If \mathbf{x}^* maximises the strictly concave function f, then \mathbf{x}^* is the unique global maximiser, i.e., $f(\mathbf{x}^*) > f(\mathbf{x}) \forall \mathbf{x} \in D, \ \mathbf{x} \neq \mathbf{x}^*$.
- 2. If $\tilde{\mathbf{x}}$ minimises the strictly convex function f, then $\tilde{\mathbf{x}}$ is the unique global minimiser, i.e., $f(\tilde{\mathbf{x}}) < f(\mathbf{x}) \forall \mathbf{x} \in D, \ \mathbf{x} \neq \mathbf{x}^*$.

Constrained Optimization w/ Equality Constrains

 $\max_{x_1, x_2} f(x_1, x_2)$ subject to $g(x_1, x_2) = 0$.

 $\mathcal{L}(x_1, x_2, \lambda) \equiv f(x_1, x_2) - \lambda g(x_1, x_2).$

$$\frac{\partial \mathcal{L}}{\partial x_1} = \frac{\partial f(x_1^*, x_2^*)}{\partial x_1} - \lambda^* \frac{\partial g(x_1^*, x_2^*)}{\partial x_1} = 0$$
$$\frac{\partial \mathcal{L}}{\partial x_2} = \frac{\partial f(x_1^*, x_2^*)}{\partial x_2} - \lambda^* \frac{\partial g(x_1^*, x_2^*)}{\partial x_2} = 0$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = g(x_1^*, x_2^*) = 0.$$

Envelope Theorem

Describes how the optimal value of the objective function in a parametrized optimization problem changes as one of the parameters changes

Let $f, h_1, \dots, R^n \times R^1 \to R^1$ be a C^1 functions. Let $\mathbf{x}^*(a) = (x_1^*(a), x_2^*(a), \dots, x_n^*(a))$ denote the solution of the problem of: max $f(\mathbf{x}, a)$

s.t.

$$h_i(\mathbf{x}, a) = 0; i = 1, ..., k$$

for any fixed choice of the paramter *a*.

Suppose that $\mathbf{x}^*(a)$ and the Lagrange multipliers $\mu_1(a), ..., \mu_n(a)$ are C^1 functions and that the NDCQ holds. Then:

$$\frac{d}{da}f(\mathbf{x}^{*}(a),a) = \frac{\partial L}{\partial a}(\mathbf{x}^{*}(a),\mu(a),a),$$

where L is teh natural Lagrangian for this problem.

Comparative Statics

Consider a system of equations with 2 unknowns (*x* and *y*) and a parameter *t*.

$$f(x, y, t) = 0$$
$$g(x, y, t) = 0$$

Determine

$$\frac{dx}{dt}$$

Inverse Function Theorem

Let *f* be a C^1 defined on an interval I in \mathbb{R}^1 . If $f'(x) \neq 0$ for all $x \in I$, then

a.) f is invertible on I

b.) its inverse g is a C^1 function on the interval f(I)c.) for all z in the domain of the inverse function g

$$g'(z) = \frac{1}{f'(g(z))}$$