Non-differentiability of Payoff Functions and Non-uniqueness of Nash Equilibria CORRECTIONS AND SUPPLEMENTS

P. v. Mouche

June 18, 2010

Corrections:

- 1. Page 732, column 1, line 23 \downarrow : ... = $\mathcal{T}_{-}^{i}(x^{i}, \varphi^{i}(\mathbf{x}))$.
- 2. Page 732, footnote 4: ... $I_{-} =] 3, 1[$ and ldots
- 3. Page 733, column 1, Property $A^i \ge :$ For all $y^i \in \varphi^i(E)$ and $b^i \in E^i \cap X^i_+, \ a^i \in E^i \cap X^i_-,$

$$\mathcal{T}^i_-(b^i, y^i) \ge \mathcal{T}^i_+(a^i, y^i) \implies b^i \le a^i.$$

Here $E^i = \{ n^i \mid \mathbf{n} \in E \}.$

- 4. Page 733, column 2, line 21 \uparrow : $\mathcal{T}_{-}^{i}(b^{i}, \varphi^{i}(\mathbf{b})) \leq \mathcal{T}_{-}^{i}(b^{i}, \varphi^{i}(\mathbf{a}))$.
- 5. Page 733, column 2: delete In Proposition 2 the third proof. (There is no 3).
- 6. Page 733, column 2, line $3 \uparrow$: is increasing, $\Phi(\mathbf{a}) \geq \Phi(\mathbf{b})$ holds. . . .
- 7. Page 734, column 1, line $18 \downarrow : \dots \Phi : E(\Gamma) \rightarrow \dots$
- 8. Page 734, column 1, line $20 \downarrow: \Psi(\Gamma) = (\Psi^1(\Gamma), \dots, \Psi^N(\Gamma))$
- 9. Page 734, column 1, line $21 \downarrow : \dots$ value of $\Phi \upharpoonright E(\Gamma)$. Note ...
- 10. Page 734, column 1, lines $24/25\downarrow$: denoted by $\Psi(\Gamma)\in\mathbb{R}$. Below it will become ...
- 11. Page 734, column 1, Lemma 2: replace this lemma by the following Lemma 2: Consider $\Gamma \in \mathcal{G}_1^{\star}$ and let $i \in \mathcal{N}$. Suppose φ^i is strictly increasing in x^i and Y^i is an interval. Then: $\#\{n^i \mid \mathbf{n} \in E\} \geq 2 \Rightarrow \Psi^i(\Gamma) \in \operatorname{Int}(Y^i)$. \diamond
- 12. Page 734, column 1, line $13 \uparrow: \Psi^i \in Int(Y^i)$. Q.E.D.
- 13. Page 734, column 2, line $1 \downarrow$: Because \mathcal{T}_{-}^{i} is strictly increasing in its ...
- 14. Page 734, column 2, line $10 \downarrow$: ldots is strictly decreasing in it ...
- 15. Page 734, column 2, line 15 \uparrow : ... is that Property $B_{1+}^i \wedge B_{1-}^i$ holds. \diamond
- 16. Page 734, column 2, line $9 \uparrow: \dots \mathcal{G}_1^{\star}$ where all functions $\mathcal{T}_+^i, \mathcal{T}_-^i$ are
- 17. Page 734, column 2, line $1 \uparrow: \dots$ then E is convex.
- 18. Page 735, column 1, line $7 \downarrow$: So by Lemma 1(2), $\mathbf{x} \in E$.
- 19. Page 735, column 1, line $9 \downarrow : \mathbf{x} \in \Phi^{<-1>}(\mathbf{\Psi})$. By ...

- 20. Page 735, column 1, line 11 \downarrow : $x^i \in r(X^i) \Rightarrow \mathcal{T}^i_-(x^i, \Psi^i) \geq 0$,
- 21. Page 735, column 1, line 12 \downarrow : $x^i \in l(X^i) \Rightarrow \mathcal{T}^i_+(x^i, \Psi^i) \leq 0$.
- 22. Page 735, column 1, line $19 \downarrow$: Theorems 2 4 imply:
- 23. Page 735, column 2, line 19 \uparrow : 2) If each \mathcal{P}^i $(i \in \mathcal{Z})$ is differentiable, then in each Nash equilibrium each f^i $(i \in \mathcal{Z})$ ldots

Comments:

Further reading:

If you think that some other things should be added here, please let me know.