a. Provide for any cost function differentiable in y a proof of the following two statements: 1) As long as the marginal cost exceeds average cost, the average cost increases. 2) As long as the marginal cost equals the average cost, the average cost is constant.
b. Given the cost function $c(\mathbf{w}, y)=y\left(\beta_{1} w_{1}+\beta_{2} w_{2}\right)$, determine the conditional input demand functions for $x_{1}(\mathbf{w}, y)$ and $x_{2}(\mathbf{w}, y)$. Give an interpretation of your result with respect to the parameters y and \mathbf{w}. Could you think of any technology which might correspond to this cost function?
c. Assume all inputs belong to either subgroup S or K. Check whether the following production functions are strongly, weakly or not separable at all:

$$
\begin{align*}
y= & \alpha_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \gamma_{i j} x_{i} x_{j}, \tag{1}\\
& \text { where } x_{i} \in S \\
y= & A x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}+B x_{3}^{\alpha_{3}} x_{4}^{\alpha_{4}}, \tag{2}\\
& \text { where } x_{1}, x_{2} \in S ; x_{3}, x_{4} \in K \\
y= & A\left[\left(\alpha_{1} x_{1}^{\rho_{1}}+\alpha_{2} x_{2}^{\rho_{1}}\right)^{\rho_{2} / \rho_{1}}+\alpha_{3} x_{3}^{\rho_{2}}\right]^{1 / \rho_{2}} \tag{3}
\end{align*}
$$

where $x_{1} \in S ; x_{2} \in K ; x_{3} \notin S \cup K$

Consumer theory

a. Anton has the utility function, $U_{A}=A x_{1}^{\alpha} x_{2}^{\beta}$, and Brigitte has the utility function, $U_{B}=B x_{1}^{\gamma} x_{2}^{\eta}$, where $\alpha, \beta, \gamma, \eta, A$, and B are positive and constant. Suppose $A \neq B, \alpha \neq \gamma$ and $\beta \neq \eta$. Is it possible that Anton and Brigitte have the same preferences? If yes, explain under what condition. Support your answer mathematically.
b. Consider a consumer with compensated demand functions of the form $x_{1}^{h}=1+3 p_{1}^{-0.5} p_{2}^{a}$ and $x_{2}^{h}=1+b p_{1}^{0.5} p_{2}^{c}$. Utility has been set equal to 1 for convenience. What are the values of the parameters a, b, and c and why?
c. For the following expenditure function determine if it is increasing and unbounded above in u, increasing in prices and homogeneous of degree one in prices: $e(\mathbf{p}, u)=u^{1 / 2}\left(2 p_{1}^{1 / 2} p_{2}^{1 / 2}\right)$.
d. A money metric utility function is defined as $m(\mathbf{p}, \mathbf{x}) \equiv e(\mathbf{p}, u(\mathbf{x}))$, where \mathbf{p} is the vector of prices, \mathbf{x} is the vector of quantities, e represents the expenditure function and u is the utility function. The money metric utility function can be interpreted as showing the amount of money m a consumer would need at prices p to be as well off as he could be by consuming the bundle of goods \mathbf{x}. Derive the money metric utility function of the consumer with the expenditure function given in c.

Solution to Producer theory a. Calculate marginal cost, average cost and slope of average cost for
$c(w, y): M C=\frac{\partial c}{\partial y} ; A C=c(w, y) / y ; \partial A C / \partial y=\left(\frac{\partial c}{\partial y} * y-c(w, y)\right) / y^{2}=(M C-A C) / y$
. As long as $M C>A C \frac{\partial A C}{\partial y}>0$ Average cost is increasing; as long as $M C=A C \frac{\partial A C}{\partial y}=0$ Average cost is constant.
b. Use Shephard's lemma to derive the conditional input demand functions: $\partial c / \partial w_{i}=$ $x_{i}=y \beta_{i}$. Thus, the number of units of each input used is constant no matter what the input prices are. The input demand functions are increasing in output given $\beta_{1}, \beta_{2}>0$. The cost function corresponds to the fixed proportions Leontief technology $y=\min \frac{x_{1}}{\beta_{1}}, \frac{x_{2}}{\beta_{2}}$, where $\beta_{1}, \beta_{2}>0$.
c. 1 is not separable at all; 2 weakly separable in S and $K ; 3$ strictly separable.

Solution to Consumer theory a. both have the same type of preferences; MRS are equal when ratio of exponents are equal: $\alpha / \beta=\gamma / \eta$
b. compensated demand functions should be homogeneous of degree zero in prices \rightarrow sum of the exponents should be zero: $a=1 / 2, c=-1 / 2$; substitution matrix should be symmetric (alternatively, Young's theorem states that second order partial derivative of expenditure function should be the same) $\rightarrow \partial x_{1}^{h} / \partial p_{2}=\partial x_{2}^{h} / \partial p_{1}: b=6 a=3$
c. increasing in u (first partial derivative with respect to $u>0$); unbounded above: $\sqrt{p_{1} p_{2}} / \sqrt{u}$ unlimited; increasing in prices, homogeneous of degree one in prices
d. derive the compensated demand functions $x_{i}^{h}=u^{1 / 2} p_{i}^{-1 / 2} p_{j}^{1 / 2}$, multiply and solve for utility: $u=x_{1}^{h} x_{2}^{h} p_{1}^{0} p_{2}^{0}=x_{1} x_{2}$, substitute into expenditure function $e=\left(x_{1} x_{2}\right)^{1 / 2} 2 p_{1}^{1 / 2} p_{2}^{1 / 2}$

