1.

There are two goods, $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}_{+}^{2}$. A consumer has the utility function $U(x)=u_{1}\left(x_{1}\right)+u_{2}\left(x_{2}\right)$ where each u_{i} is twice continuously differentiable with $u_{i}{ }^{\prime}\left(x_{i}\right)>0$ and $u_{i} "\left(x_{i}\right)<0$ for all $x_{i} \in \mathbf{R}_{+}^{1}$. Each u_{i} also satisfies the condition: $\lim _{x_{i} \rightarrow 0} u_{i}{ }^{\prime}\left(x_{i}\right)=+\infty$. Assume that prices of both goods are positive, that is, $p_{i}>0$, and wealth is positive, that is, w >0.
a.) Write the consumer's problem as a constrained optimization problem and display the first order conditions for this optimization problem.
b.) Show that if wealth decreases then the demand for good 1 decreases.
c.) What is the sign of the effect of a change in the price of good 1 on the consumer's demand for good 2? Show your work.
(4 points)
2. Provide a brief answer for each of the following questions.
a.) A consumer has the expenditure function $e\left(p_{1}, p_{2}, u\right)=\frac{u p_{1} p_{2}}{p_{1}+p_{2}}$. Find this consumer's indirect utility function.
(3 points)
b.) A firm has the profit function $\pi\left(p, w_{1}, w_{2}\right)=p^{2}\left(w_{1}^{\alpha}+w_{2}{ }^{\alpha}\right)$, where p is the output price and $w_{1} ; w_{2}$ are input prices. Find this firm's output supply function.
(3 points)
c.) A student has solved a cost minimization problem for a firm and concluded that the cost function is $c\left(w_{1}, w_{2}, y\right)=y w_{1}^{1 / 4} w_{2}^{1 / 4}$. Explain why his solution is incorrect.
(1 point)
d.) Show that if each of the $i=1, \ldots, I$ consumers in an economy has an indirect utility function of the form $v_{i}\left(p, w_{i}\right)=a_{i}(p)+b(p) w_{i}$, where $p \in \mathbf{R}_{+}^{N}$ is the price vector and $w_{i} \in \mathbf{R}_{+}^{1}$ is i 's wealth, then aggregate demand can be written as a function of aggregate wealth $w=\sum_{i}^{I} w_{i}$.
3. A contest game with complete (part a-c) and incomplete information (d-g).

There are two agents $i=1,2$ competing for a prize P that has subjective valuation $v_{i}(P)$. Both agents invest simultaneously to obtain the prize. The cost of the investment is either 1 or 2 , i.e. $c_{i} \in\{1,2\}$.

Agent i 's probability of winning the prize is $\frac{c_{i}}{c_{1}+c_{2}}$.
a) Determine the payoff function. (1 point)
b) Draw the game tree that represents the game as an extensive form game. (1 point)
c) Show that high investments $\left(c_{i}=2\right)$ are a (strictly) dominant strategy if the valuation of the prize $v_{i}(P)>6$. (2 points)

Now consider incomplete information. Suppose the agents either place a high value on the prize $v_{i}^{H}(P)=9$ or a low value $v_{i}^{L}(P)=3$. The common prior probabilities are given in the following table:

	v_{2}^{L}	v_{2}^{H}
v_{1}^{L}	0.16	0.24
v_{1}^{H}	0.24	0.36

d) Draw the game tree that reflects that players' types are randomly determined. (2 points)
e) Calculate the expected payoff of a player with a high valuation for each of his investment strategies. (2 point)
f) Calculate the expected payoff of a player with a low valuation for each of his investment strategies. (l point)
g) Describe the Bayesian-Nash Equilibria of the game. (1 point)

4. Expected Utility

One definition of risk aversion is this:
An agent is risk averse if $u(E(g))>u(g)$,
where g is a gamble, u is a vNM-utility function and $E(g)$ is the expected outcome of gamble g.
a) Show that an agent with $u(w)=\alpha \ln w(\alpha>0)$ is risk averse according to the definition when faced with the gamble $g=\left(\frac{1}{2} \circ\left(w_{0}+h\right), \frac{1}{2}\left(w_{0}-h\right)\right)$. (3 points)
[It may be helpful to know that $\ln x+\ln y=\ln (x y)$ and $y \cdot \ln x=\ln \left(x^{y}\right)$]
b) Calculate the certainty equivalent, \hat{c}. (3 points)
c) Recall the definition of a risk premium: $p=E(g)-\hat{c}$. Is the risk premium associated with gamble g increasing or decreasing in initial wealth? Interpret your finding. (2 points)
d) The variable h signifies a mean preserving spread. Argue that an increase in h means a larger risk. (2 points)

