
Advanced Microeconomics

P. v. Mouche

Exercises 2

Exercise 1 Prove that a fully cooperative strategy pro�le is strongly Pareto e�cient.

Exercise 2 Determine which of the following bimatrix games are a prisoner's dilemma.

a.

 3;−1 3; 1 6; 0
1; 0 3; 1 6; 0
2; 2 4; 1 8; 2

.

b.

(
1; 0 3; 1 6; 0
2; 1 4; 1 8; 1

)
.

c.

 6; 1 3; 1 1; 5
2; 4 4; 2 2; 3
5; 1 6; 1 5; 2

.

d.

(
−1;−1 2; 0
0; 2 3; 3

)
.

e.

(
2; 2 −1; 3
3;−1 0; 0

)
.

Exercise 3 Answer the following true/false questions concerning bimatrix games.

a. A bimatrix game concerns a game with two players.

b. Each bimatrix game has at least one Nash equilibrium.

c. Each bimatrix game has a strictly dominant strategy.

d. Each bimatrix game has a fully cooperative strategy pro�le.

e. Each bimatrix game has a weakly Pareto e�cient strategy pro�le.

f. Each fully cooperative strategy pro�le is weakly Pareto e�cient.

e. A strictly dominant strategy is fully cooperative.

f. A prisoners' dilemma game has a Nash equilibrium.

g. It is impossible that a weakly Pareto ine�cient strategy pro�le is a Nash equilibrium.

h. A Nash equilibrium is a strategy pro�le that consists of strategies of the players' that they like
the most.
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Exercise 4 The following true/false questions deal with the bimatrix game(
3; 6 6; 5 7;−3
−6; 2 5; 3 5; 4

)
.

a. The row-player has 2 strategies.

b. There are 6 strategy pro�les.

c. The strategy pro�le (1, 1) is a Nash equilibrium.

d. The row-player has a strictly dominant strategy.

e. There is a weakly Pareto ine�cient nash equilibrium.

f. The column-player has a strictly dominant strategy.

g. This game is a prisoners' dilemma.

h. Playing row 1 and column 3 is a fully cooperative strategy pro�le

i. This game is a zero-sum game.

j. (1, 2) is a weakly Pareto e�cient strategy pro�le.

Exercise 5 Consider the Hotelling game in the case m = 2 (so there are three vertices) and w = 1
(i.e. inelastic case). Determine the Nash equilibria of this game

a. Represent this game as 3× 3-bi-matrix game with at the �rst row strategy 0 for player 1, at the
second row strategy 1 for player 1, etc.

b. Determine the Nash equilibria, the strongly Pareto e�cient strategy pro�les and the weakly
Pareto e�cient strategy pro�les.

Exercise 6 Again consider the Hotelling Game with sites 0, 1, . . . ,m. Suppose m is even.

a. Show that for the payo� function f1 of player 1

f1(x1, x2) :=


x1+x2+1

2 if x1 < x2,
m+1
2 if x1 = x2,

m+ 1− x1+x2+1
2 if x1 > x2

b. Show that (m/2,m/2) is a Nash equilibrium.
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Short solutions.

Solution 1 We prove this by contradiction. So suppose x is fully cooperative and x would not be strongly Pareto
e�cient. Then there exists a pareto improvement y of x. In y the sum of payo�s is greater than in x. This is a
contradiction with x being fully cooperative.

Solution 2 Only the game in e is a prisoner's dilemma game.

Solution 3 aT bF cF dT eT fT gF hT iF jF.

Some explanation. Concerning f (each fully cooperative strategy pro�le is weakly Pareto e�cient): suppose the
strategy pro�le x is fully cooperative, meaning that the total payo� is maximal. If it would not be weakly Pareto
e�cient, then there is a strategy pro�le which is better for both players and thus leads to a greater payo� than in
x. (In fact each fully cooperative strategy pro�le even is strongly Pareto e�cient. In order to see this modify the
above reasoning in an appropriate way.)

Concerning e: as each bimatrix game has a fully cooperative strategy pro�le, part f implies that each bimatrix
game has a weakly Pareto e�cient strategy pro�le.

Solution 4 aT bT cT dT eF fF gF hF iF jT.

Solution 5 a.  3/2; 3/2 1; 2 3/2; 3/2
2; 1 3/2; 3/2 2; 1

3/2; 3/2 1; 2 3/2; 3/2

 .

b. There is a unique Nash equilibrium: the strategy pro�le (2, 3), i.e. (vertex 1, vertex 1).
c. Each strategy pro�le is strongly Pareto e�cient and weakly Pareto e�cient (and even fully cooperative).

Solution 6 a. Make a �gure and count the contributions. In doing so, ditinguish between x1 +x2 even and x1 +x2

odd.
b. We have to show that f1(x1,m/2) ≤ f1(m/2,m/2) for all x1 and that f2(m/2, x2) ≤ f2(m/2,m/2) for all

x2. We prove here the �rst statement; the second follows in the same way.

For x1 = m/2, the statement is clear. For x1 < m/2, we have, using part a, f1(x1,m/2) =
x1+

m
2
+1

2
=

x1
2

+ m
4

+ 1
2

< m
4

+ m
4

+ 1
2

= m+1
2

= f1(
m
2
, m

2
). And for x1 > m/2, we have, using part a, f1(x1,m/2) =

m+ 1− x1+
m
2
+1

2
= m+ 1− x1

2
− 1

2
− m

4
= 3

4
m+ 1

2
− x1

2
> 3

4
m+ 1

2
− m

4
= m+1

2
= f1(

m
2
, m

2
).


