Advanced Microeconomics

P. v. Mouche

Exercises 2

Exercise 1 Prove that a fully cooperative strategy profile is strongly Pareto efficient.
Exercise 2 Determine which of the following bimatrix games are a prisoner's dilemma.
a. $\left(\begin{array}{ccc}3 ;-1 & 3 ; 1 & 6 ; 0 \\ 1 ; 0 & 3 ; 1 & 6 ; 0 \\ 2 ; 2 & 4 ; 1 & 8 ; 2\end{array}\right)$.
b. $\left(\begin{array}{ccc}1 ; 0 & 3 ; 1 & 6 ; 0 \\ 2 ; 1 & 4 ; 1 & 8 ; 1\end{array}\right)$.
c. $\left(\begin{array}{ccc}6 ; 1 & 3 ; 1 & 1 ; 5 \\ 2 ; 4 & 4 ; 2 & 2 ; 3 \\ 5 ; 1 & 6 ; 1 & 5 ; 2\end{array}\right)$.
d. $\left(\begin{array}{cc}-1 ;-1 & 2 ; 0 \\ 0 ; 2 & 3 ; 3\end{array}\right)$.
e. $\left(\begin{array}{cc}2 ; 2 & -1 ; 3 \\ 3 ;-1 & 0 ; 0\end{array}\right)$.

Exercise 3 Answer the following true/false questions concerning bimatrix games.
a. A bimatrix game concerns a game with two players.
b. Each bimatrix game has at least one Nash equilibrium.
c. Each bimatrix game has a strictly dominant strategy.
d. Each bimatrix game has a fully cooperative strategy profile.
e. Each bimatrix game has a weakly Pareto efficient strategy profile.
f. Each fully cooperative strategy profile is weakly Pareto efficient.
e. A strictly dominant strategy is fully cooperative.
f. A prisoners' dilemma game has a Nash equilibrium.
g. It is impossible that a weakly Pareto inefficient strategy profile is a Nash equilibrium.
h. A Nash equilibrium is a strategy profile that consists of strategies of the players' that they like the most.

Exercise 4 The following true/false questions deal with the bimatrix game

$$
\left(\begin{array}{ccc}
3 ; 6 & 6 ; 5 & 7 ;-3 \\
-6 ; 2 & 5 ; 3 & 5 ; 4
\end{array}\right)
$$

a. The row-player has 2 strategies.
b. There are 6 strategy profiles.
c. The strategy profile $(1,1)$ is a Nash equilibrium.
d. The row-player has a strictly dominant strategy.
e. There is a weakly Pareto inefficient nash equilibrium.
f. The column-player has a strictly dominant strategy.
g. This game is a prisoners' dilemma.
h. Playing row 1 and column 3 is a fully cooperative strategy profile
i. This game is a zero-sum game.
j. $(1,2)$ is a weakly Pareto efficient strategy profile.

Exercise 5 Consider the Hotelling game in the case $m=2$ (so there are three vertices) and $w=1$ (i.e. inelastic case). Determine the Nash equilibria of this game
a. Represent this game as 3×3-bi-matrix game with at the first row strategy 0 for player 1 , at the second row strategy 1 for player 1 , etc.
b. Determine the Nash equilibria, the strongly Pareto efficient strategy profiles and the weakly Pareto efficient strategy profiles.

Exercise 6 Again consider the Hotelling Game with sites $0,1, \ldots, m$. Suppose m is even.
a. Show that for the payoff function f_{1} of player 1

$$
f_{1}\left(x_{1}, x_{2}\right):=\left\{\begin{array}{l}
\frac{x_{1}+x_{2}+1}{2^{2}} \text { if } x_{1}<x_{2} \\
\frac{m+1}{2} \text { if } x_{1}=x_{2}, \\
m+1-\frac{x_{1}+x_{2}+1}{2} \text { if } x_{1}>x_{2}
\end{array}\right.
$$

b. Show that $(m / 2, m / 2)$ is a Nash equilibrium.

Short solutions.
Solution 1 We prove this by contradiction. So suppose \mathbf{x} is fully cooperative and \mathbf{x} would not be strongly Pareto efficient. Then there exists a pareto improvement \mathbf{y} of \mathbf{x}. In \mathbf{y} the sum of payoffs is greater than in \mathbf{x}. This is a contradiction with \mathbf{x} being fully cooperative.

Solution 2 Only the game in e is a prisoner's dilemma game.
Solution 3 aT bF cF dTeT fT gF hT iF jF.

Some explanation. Concerning f (each fully cooperative strategy profile is weakly Pareto efficient): suppose the strategy profile \mathbf{x} is fully cooperative, meaning that the total payoff is maximal. If it would not be weakly Pareto efficient, then there is a strategy profile which is better for both players and thus leads to a greater payoff than in \mathbf{x}. (In fact each fully cooperative strategy profile even is strongly Pareto efficient. In order to see this modify the above reasoning in an appropriate way.)

Concerning e: as each bimatrix game has a fully cooperative strategy profile, part f implies that each bimatrix game has a weakly Pareto efficient strategy profile.

Solution 4 aT bT cT dT eF fF gF hF iF jT

Solution 5 a.

$$
\left(\begin{array}{ccc}
3 / 2 ; 3 / 2 & 1 ; 2 & 3 / 2 ; 3 / 2 \\
2 ; 1 & 3 / 2 ; 3 / 2 & 2 ; 1 \\
3 / 2 ; 3 / 2 & 1 ; 2 & 3 / 2 ; 3 / 2
\end{array}\right)
$$

b. There is a unique Nash equilibrium: the strategy profile (2,3), i.e. (vertex 1 , vertex 1).
c. Each strategy profile is strongly Pareto efficient and weakly Pareto efficient (and even fully cooperative).

Solution 6 a. Make a figure and count the contributions. In doing so, ditinguish between $x_{1}+x_{2}$ even and $x_{1}+x_{2}$ odd.
b. We have to show that $f_{1}\left(x_{1}, m / 2\right) \leq f_{1}(m / 2, m / 2)$ for all x_{1} and that $f_{2}\left(m / 2, x_{2}\right) \leq f_{2}(m / 2, m / 2)$ for all x_{2}. We prove here the first statement; the second follows in the same way.

For $x_{1}=m / 2$, the statement is clear. For $x_{1}<m / 2$, we have, using part a, $f_{1}\left(x_{1}, m / 2\right)=\frac{x_{1}+\frac{m}{2}+1}{2}=$ $\frac{x_{1}}{2}+\frac{m}{4}+\frac{1}{2}<\frac{m}{4}+\frac{m}{4}+\frac{1}{2}=\frac{m+1}{2}=f_{1}\left(\frac{m}{2}, \frac{m}{2}\right)$. And for $x_{1}>m / 2$, we have, using part a, $f_{1}\left(x_{1}, m / 2\right)=$ $m+1-\frac{x_{1}+\frac{m}{2}+1}{2}=m+1-\frac{x_{1}}{2}-\frac{1}{2}-\frac{m}{4}=\frac{3}{4} m+\frac{1}{2}-\frac{x_{1}}{2}>\frac{3}{4} m+\frac{1}{2}-\frac{m}{4}=\frac{m+1}{2}=f_{1}\left(\frac{m}{2}, \frac{m}{2}\right)$.

