Co-operative Game theory - Class room problems

Problem 1 One interpretation of an egalitarian solution in a cost sharing game with subadditive costs is equal sharing of surplus. Consider a cost sharing game (N,c) with $N=\{1,2\}$ and the cost (characteristic) function c. The surplus (cost saving) is defined as $W=c(\{1\})+c(\{2\})-c(\{1,2\})$. Then egalitarian surplus sharing means $(x_1,x_2)=(c(1)-\frac{W}{2},c(2)-\frac{W}{2})$.

- a) Calculate the egalitarian surplus sharing solution when $c(\{1\}) = 120$; $c(\{2\}) = 140$; $c(\{1,2\}) = 170$.
 - b) Is this solution in the core? Why?

Problem 2 Generalization of egalitarian sharing.

- a) How can egalitarian surplus sharing be generalized to three players? And to n players?
- b) Consider now $c(\{1\}) = 120$; $c(\{2\}) = 140$; $c(\{1,2\}) = 170$, as before and a third player such that $c(\{3\}) = 120$; $c(\{1,3\}) = 160$; $c(\{2,3\}) = 190$; $c(\{1,2,3\}) = 255$. Calculate the payoffs for egalitarian surplus sharing.
 - c) Show that the solution for d) is not in the core.
 - d) Find the core of the cost sharing game.

Problem 3 Consider Problem 1.

- a) Describe the situation as a bargaining game, i.e. determine the disagreement point and the bargaining set.
 - b) Find the Nash bargaining solution.
 - c) Argue that it must be in the core.